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Abstract:

Background:

The road management agencies often prescribe very low-speed limits for exceptional vehicles transiting on the deck. These restrictions aim to
reduce the dynamic effects due to the vehicle-bridge interaction because it is assumed that these effects increase with speed. However, sometimes,
a reduction in speed increases the encounter probability of two exceptional vehicles travelling in opposite directions and this could compromise the
safety of the bridge when the total masses of both vehicles exceed the bridge bearing capacity (or limit mass).

Objective:

While the literature has investigated the encounter probability in a theoretical way and has investigated the vehicle-bridge interaction, especially in
terms  of  dynamic  load  increment,  to  the  best  of  our  knowledge,  no  study  has  investigated  the  conjunction  probability  of  encounters  and  of
exceeding the limit mass also by using real data. This paper aims to cover this gap by proposing an integrated model that computes the “Annual
Probability of Failure” of the bridge, defined as the likelihood to exceed the “Limit Mass" of the deck when two opposite exceptional vehicles
encounter.

Methods:

According to the probability theory, the “Annual Probability of Failure” can be obtained by multiplying the likelihood that during the reference
year, at least once, two exceptional vehicles, travelling in two opposite directions (ascendant and descendant), will be simultaneously on the bridge
deck (“Annual probability of encounter”) with the likelihood that the sum of the single masses of two exceptional vehicles randomly extracted
from the sample, including the dynamic effects, exceeds the limit mass ml (“Probability of exceeding the limit mass”).

Results:

The results show that the probability of encounter increases with both the exceptional vehicles flow rate and the length of the span, whereas it
decreases  with  the  passing  speed.  The  probability  of  exceeding  the  limit  mass  increases  with  speed.  Nevertheless,  by  combining  both  the
probabilities, these results suggest the existence of an “Optimal Speed”, which minimizes the “Annual Probability of Failure”.

Conclusion:

The existence of an “Optimal Speed” should be considered when defining the exceptional vehicle transit rules on bridges as well as the speed limit.
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1. INTRODUCTION
The  term  “exceptional  vehicles”  indicates  those  vehicles

which, in their travel configuration, exceed size and / or mass
limits imposed by traffic codes.
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At  the  European  Union  level,  vehicular  circulation  is
regulated by the Directive 96/53/EC [1], recently updated by
the  Directive  2015/719  [2],  which  prescribes  the  “maximum
authorized  dimensions”,  “maximum  authorized  weight”  and
“maximum  axle  weight”  for  use  in  international  traffic.
Particularly, the maximum authorized weight depends on the
vehicular configuration, ranging from 18 t for two-axle trailers
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up to 44 t for articulated vehicles with five or six axles.

In Italy, these limits are prescribed by Art. 61 and Art. 62
of D.lgs. 30 April 1992 n. 285 [3]. In particular, the mass limit
varies according to the vehicular typology, as shown in Table
1.

Table 1. Mass limits set by the Italian Code [3].

Vehicle Type Mass Limit

Isolated

18 t for 2-axle vehicles
25 t for vehicles with 3 or more axles

20 t for 2-axle heavy machinery
33 t for 3-axle heavy machinery

40 t for heavy machinery with 4 or more axles

Articulated

24 t for 3-axle road trains
30 t for 3-axle articulated lorries

40 t for 4-axle articulated vehicles
44 t for articulated vehicles with 5 or more axles

44 t for 4-axle heavy machinery
56 t for heavy machinery with 5 or more axles

Exceptional  transport  regulation  is  currently  of  primary
importance  for  road  management  agencies.  Indeed,  the
growing  heavy  vehicle  flow  and  the  progressive  increase  in
transported masses can negatively affect road circulation and
infrastructure  safety.  Regarding  infrastructure,  the  problem
mainly  concerns  the  acceleration  of  road  pavement
deterioration and bridge stability impairment. This is a crucial
issue in Italy, considering the recent collapse of bridges built in
the second half of the last century, designed to withstand lower
vehicle loads than those currently transiting on road networks.

For these reasons, exceptional vehicles must comply with
complex  regulations  and  are  subject  to  specific  circulation
authorizations  issued  by  the  road  owner  or  by  road
management agencies. In Italy, for instance, the authorization
is issued on a case by case basis (single authorization), or for
several  transits  (multiple  authorization),  or  for  certain  time
limits (periodic authorization). In the authorization provision,
pre-established routes and an eventual technical escort service
can  be  imposed.  Authorization  can  only  be  given  when  it  is
compatible with the preservation of road superstructures, with
the stability of structures and safety of traffic [3].

In order to ensure safety, road management agencies often
prescribe very low-speed limits for exceptional trucks moving
on bridge decks, especially when the structure shows evident
signs of material degradation. The aim of these restrictions is to
reduce  the  dynamic  effects  due  to  the  vehicle-bridge
interaction, assuming that these rise with speed. However, on
two-way  bridges,  the  encounter  of  two  exceptional  vehicles
travelling in opposite directions (ascendant and descendant) is
crucial, if the sum of their masses exceeds the bridge bearing
capacity.  Since  speed  reduction  leads  to  an  increase  in  the
encounter  probability,  the  favorable  effects  of  the  agency’s
prescriptions could be invalidated.

Theoretically,  authorities  could  prevent  the  encounter
event  by  simply  prohibiting  the  simultaneous  presence  of
exceptional  vehicles on the deck.  However,  compliance with
this  requirement  is  difficult  to  implement  in  the  absence  of

weighing systems at the bridge entrances, especially for those
vehicles that are exceptional only in mass: indeed, the technical
escort,  in  the  Italian  Code,  is  prescribed  exclusively  for
vehicles  that  are  exceptional  even  in  size.  Moreover,  the
current  Italian  authorization  system  does  not  facilitate  the
implementation of this prohibition, as the authorized trips, even
if single or multiple, must not be carried out on a specific date
and time, but within a certain time interval, which can also be
equal to a few months.

The  analysis  of  vehicle  loads  acting  on  bridges  is  a
recurrent  topic  in  the  scientific  literature.  Stephenson  [4]
developed  a  theoretical  method,  based  on  the  elementary
probability  theory,  to  estimate  live  load  frequencies  on  the
highway that may be expected from various types and levels of
heavy  motor  vehicle  operation.  The  main  objective  of  the
method was to provide a relatively simple mathematical basis
to estimate approximately how often any specified sequence or
group of two or more vehicles might be expected to occur on
any particular part or length of a bridge as a result of given or
anticipated compositions, volumes and speeds of traffic. Based
on Poisson’s Law, the method shows how the probability that a
fixed number of vehicles occurring at a given location, in any
manner,  in  either  or  both  directions  of  travel,  within  a  fixed
time interval or length, decreases when the average vehicular
speed increases. However, no experimental measurements were
conducted;  therefore  theoretical  values  were  assumed  for
traffic  volumes  and  compositions.

The  lack  of  experimental  data  was  still  present  in  1984
when Fenwick [5] outlined the requirements to derive design
loads  for  bridges  and  pavements  that  should  have  been
contemplated during the drafting of a new Bridge Design Code
in  limit  state  format.  The  author  noted  that  previous  bridge
codes  had  defined  live  loads  in  a  deterministic  manner.
Typically,  the  serviceability  design  load  was  defined  by
increasing the legal load by an arbitrary factor (about 15%) to
cover  overloading,  future  increases  in  legal  loads,  etc.
Conversely, no attempt has been made to actually measure real
traffic  loads  on  a  statistical  basis  and  to  confirm  the  design
values.  The  main  reasons  for  not  bothering  to  measure  real
traffic  loads  were  technical  as  the  necessary  instrumentation
was  not  available.  He  concluded  that  it  was  necessary  to
undertake  data  collection  campaigns  in  order  to  measure  the
real traffic loads on bridges and to conduct statistical analyses
on them.

Only recently,  the development of the Weight In Motion
(WIM)  systems  has  finally  provided  large  amounts  of
experimental  observations  on  heavy  vehicular  traffic.  For
instance, examples of extreme value statistics of traffic loads
and effects on a medium span bridge were presented [6]. Gross
vehicle weight associated with a return period of 1000 years, as
prescribed by Eurocode 1 [7] for traffic on the main roads in
Europe, was estimated using available WIM data recorded on a
bridge located on a heavily trafficked itinerary in the North of
Paris.  Conversely,  Enright  and  O’Brien  [8]  presented  a
comprehensive model for the Monte Carlo simulation of bridge
loading  for  free-flowing  traffic,  and  showed  how  the  model
matched  results  from  measurements  on  five  European
highways.  An  estimation  of  site-specific  lifetime  extreme
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traffic load effects, in terms of mid-span moment, mid-support
hogging moment and support shear, was made using statistical
distributions derived from weight-in-motion measurements as
the basis for the Monte Carlo simulation of traffic loading.

Previous studies focused on traffic load determination but
did  not  deal  with  dynamic  effects  due  to  bridge-vehicle
interaction. Since the 20th century, a lot of research works have
been conducted on this topic, initially in the railway field and,
only  later,  on  road  structures.  It  was  discovered  that  the
magnitude  of  the  dynamic  load  depends  on  several  factors,
including bridge dynamic behaviors,  road roughness,  vehicle
dynamic characteristics, vehicle speed, type, weight, number of
axles, axle spacing, the position of vehicles on the bridge, and
other parameters [9, 10].

Theoretical  investigations  on  this  issue  can  be  split  into
two categories: analytical and numerical studies.

Analytical  studies  on  the  dynamic  effects  of  a  moving
vehicle are mostly mathematical investigations on simple-span
highway  bridges  and  generally  incorporate  the  following
assumptions  [11].

The  actual  bridge  deck  system,  consisting  of  a  floor
system  of  several  girders,  can  be  represented  by  a
single  beam  of  equivalent  stiffness;
Only the first natural frequency of vibration needs to
be considered;
Regardless  of  the  number  of  axles  and  the
corresponding number of springs and tires, the vehicle
can  be  idealized  as  a  system with  a  single  degree  of
freedom;
The weight of a vehicle is applied at the center of its
mass.

Numerical  studies  are  based  on  Finite  Element  Analysis
(FEA).  A  bridge  is  described  by  using  a  three-dimensional
model  that  includes  all  the  structural  elements,  such  as
longitudinal  beams,  transverse  beams,  side  curbs,  concrete
slabs  and elastomeric  bearing pads.  Vehicles  are  modeled as
mechanical  systems  with  multiple  degrees  of  freedom,
consisting of masses connected to each other by elastic springs
and  viscous  dampers,  to  simulate  the  behavior  of  the
suspension  and  the  tires.  The  number  of  these  elements
determines  the  complexity  and  degree  of  accuracy  in
describing  the  response  of  the  vehicle.  Equations  of  motion
solution  are  then  calculated  through  iterative  integration
procedures  [12].

Overall, there are no doubts that all these studies provided
interesting  and  captivating  results  for  both  research  and
practice.  However,  as  far  as  the  authors  know,  no  study  has
ever  been  conducted  on  how  the  encounter  probability  of
exceptional  vehicles  on  the  bridge  deck  and  the  dynamic
effects due to vehicle-structure interaction globally concur in
determining the level of infrastructural safety. This paper aims
to  cover  this  gap,  by  developing  a  model  for  calculating  the
“Annual  Probability  of  Failure”  of  a  bridge  subject  to
exceptional  vehicle  transits,  understood  as  the  annual
probability of exceeding an assigned limit state. The prediction
is  made  by  multiplying  the  probability  of  encounter  of  two

exceptional  vehicles  on  the  deck,  estimated  through  the
Poisson distribution,  with the probability  that  the sum of the
masses  of  these  two  vehicles  exceeds  a  fixed  limit  value
associated  with  the  considered  limit  state.

The  remainder  of  this  paper  is  organized  as  follows.  In
Section  2,  a  model  is  presented  to  estimate  the  “Annual
Probability  of  Failure”.  In  Section  3,  the  implementation  of
this  model  is  illustrated  by  using  real  data  provided  by  an
Italian  road  management  agency  and  the  results  are  briefly
discussed.  Finally,  in  Section  4,  conclusions  and  research
perspectives  are  provided.

2. METHODS

The  goal  of  the  design  of  engineering  work  is  to  ensure
that  it  fulfills  the  function  for  which  it  was  conceived  while
maintaining  an  established  "Level  of  Safety",  generally
understood as a degree of protection for people and property
against the effects of a possible system failure. In this context,
the  term  "System  Failure"  does  not  necessarily  mean  the
collapse  of  the  structure,  but  indicates,  in  a  much  broader
sense,  the  achievement  and/or  overcoming  of  any  situation
(defined  as  the  "Limit  State")  which  could  lead  to  a
malfunction  of  the  entire  system or  of  a  portion  thereof  and
which, therefore, is capable of causing unwanted consequences
[13].

It  is  noteworthy  that  the  bridge  damage/collapse  is  a
catastrophic event; the occurrence of which is unacceptable, at
least  from  a  theoretical  viewpoint.  However,  the  parameters
that govern the behavior of a structure during its entire service
life,  such  as  the  resistance  of  the  materials  (endogenous
factors) and the actions acting on it (exogenous factors) are not
deterministic.  In  order  to  consider  these  uncertainties  in  a
"scientific"  and  "rational"  way,  typical  not  only  of  civil
engineering, but more generally of physics and natural sciences
of which the engineering discipline is a direct descendant, it is
useful  to  rely  on  "Theory  of  Probability  ”.  This  theory  can
translate into mathematical language the confidence nourished
on the outcome of a certain phenomenon as a function of how
much  one  is  able  to  describe  it  in  every  aspect.  The  "Limit
States" design method, currently prescribed by the codes of the
most advanced countries, such as the Eurocodes [14], is based
on a probabilistic approach.

In this model,  for ease,  a system constituted by a simply
supported  single  span  bridge  is  considered.  However,  the
results can be easily extended to a single span of an isostatic
multiple  span  bridge.  Let  “Limit  Mass”  (ml)  be  the  overall
vehicular  mass  value,  simultaneously  acting  on  the  deck,
capable of inducing a “Limit State” condition for the bridge.

This limit state could be:

An “Ultimate Limit State”, i.e. a condition beyond which
the adequate level of structural safety is not guaranteed, e.g. the
ultimate bending moment of the beams that support the deck;

A  “Serviceability  Limit  State”,  i.e.  a  condition  beyond
which  good  structural  behavior  is  not  ensured,  for  example,
limit deflection, crack opening, vibrations, etc.

In  order  to  quantitatively  measure  how  the  exceptional
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vehicle speed could affect bridge reliability, it is necessary to
define  an  indicator.  This  indicator  can  be,  for  example,  the
“Annual Probability of Failure” (Pfail), i.e. the probability that,
during  a  generic  reference  year,  the  sum  of  the  vehicular
masses  simultaneously  acting  on  the  deck  exceeds  the  limit
mass  associated  with  an  assigned  limit  state.  Moreover,  the
bridge  reliability  could  be  assessed  through  the  “Return
Period”  (Tret),  intended  as  an  average  time  between  two
failures.  According  to  the  probability  theory,  Pfail  can  be
obtained by composing the two single probabilities Penc and Pml:

(1)

Penc  is  the  “Annual  Probability  of  Encounter”,  i.e.  the
likelihood  that  during  the  reference  year,  at  least  once,  two
exceptional  vehicles,  travelling  in  two  opposite  directions
(ascendant  and  descendant),  will  be  simultaneously  on  the
bridge  deck.

Pml is the “Probability of Exceeding the Limit Mass”, i.e.
the  likelihood  that  the  sum  of  the  single  masses  of  two
exceptional  vehicles  randomly  extracted  from  the  sample,
including  the  dynamic  effects,  exceeds  the  limit  mass  Pml.

The “Return Period” (Tret) can be obtained as the reciprocal
of Pfail:

(2)

2.1. Calculation of the “Annual Probability of Encounter”
(Penc)

In  order  to  calculate  the  probability  of  encounter,  it  is
required to define a “Reference Period” (Tref) within which this
likelihood is evaluated:

(3)

Where:

dfi [h] is the "Daily Flow Interval", i.e. the daily time
interval within which exceptional vehicle circulation is
assumed to occur;
nwd [d] is the annual number of working days;
ny  [y]  is  the  number  of  years  within  which  the
probability of encounter events is calculated.

The flow is assumed to occur only during a defined daily
time interval (dfi) and only during a certain number of working
days  (nwd).  This  is  a  realistic  hypothesis,  more  conservative
than assuming that it occurs at any time during the whole year.

Assuming that the exceptional vehicles move on the bridge
at a constant speed, then the permanence time on the deck is:

(4)

Where:

L [m] is the span length;
v  [m/s]  is  the  transit  speed,  assumed  to  be  constant
over time.

The  average  daily  exceptional  vehicle  flow  rate,  in
ascending and descending directions respectively, is computed
as follows:

(5)

(6)

Where:

Qy,A [veh/y] is the annual exceptional vehicle flow rate
in the ascending direction;
Qy,D [veh/y] is the annual exceptional vehicle flow rate
in the descending direction.

The probability that  an exceptional vehicle,  in ascending
and  descending  directions,  is  on  the  bridge  in  each  assigned
time interval ∆t ϵ dfi is obtained by (7) and (8):

(7)

(8)

Where n = (3600∙dfi)/∆t [rep/d] is the number of repetitions
of the permanence time (∆t) within the daily flow interval (dfi).

Equations  (7)  and  (8)  are  directly  derived  from  the
classical definition of probability. It states that, if h indicates
the number of favorable cases to the occurrence of a considered
event E and H indicates the number of possible cases, then the
probability P(E) of the event is provided by (9):

(9)

In  our  example,  the  event  E  can  be  defined  as  the
fulfillment of the proposition “An exceptional vehicle is on the
bridge during the assigned time interval ∆t ϵ dfi”, the number
of  favorable  cases  (h)  is  the  number  of  exceptional  vehicles
that transit on the bridge during the daily flow interval (i.e. the
average daily exceptional  vehicle flow Qd,A  and Qy,D)  and the
number  of  possible  cases  (H)  coincides  with  the  number  of
repetitions  of  the  permanence  time  within  the  daily  flow
interval  (n).

The  probability  that,  in  each  time  interval  ∆t,  two
exceptional  vehicles  coming  from  opposite  directions  are
simultaneously on the structure is obtained by combining the
two single probabilities pA and pD:

(10)
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The  probability  of  a  given  number  x  ϵ  N  of  encounter
events occurring in the fixed reference period (Tref) is provided
by (11):

(11)

Where:

• λ= p∙N  [rep] is the most probable number of repetitions
during the reference period (Tref);

•  N=Tref/∆t  [rep]  is  the  number  of  repetitions  of  the
permanence time ∆t within the reference period (Tref), i.e. the
number of trials.

Equation  (11)  represents  the  Poisson  probability  mass
function, that is, an approximation of the binomial distribution
under certain conditions. Indeed, in a binomial process (i.e., an
experiment  in  which each trial  can have only two outcomes,
called success and failure) of N trials, the probability P(x) that
an event will occur exactly x times is provided by the binomial
distribution (12):

(12)

Where p is the probability of success in a single trial.

If  the  number  of  trials  (N)  is  very  large,  in  a  limit  case
tending  to  infinity,  then  the  binomial  distribution  can  be
approximated  with  the  Poisson  probability  mass  function.
Indeed,  the  Poisson  Limit  Theorem,  the  proof  of  which  is
reported in Appendix 1, states that:

(13)

Considering that, in our case study, N is very large; then
equation (11) is a good approximation for P(x).

The probability that the encounter event will occur at least
once during the reference period is the complement to one of
the likelihoods that the event will occur zero times:

(14)

As  reported  in  Appendix  2,  by  making  the  appropriate
substitutions, equation (15) is obtained:

(15)

The “Annual Probability of Encounter” can be calculated
considering a reference period of 1 year, i.e. by setting ny=1:

(16)

2.2. Calculation of the “Probability of Exceeding the Limit
Mass” (Pml)

Let  mA  and  mD  [t]  be  the  masses  of  the  vehicles  coming

from  the  ascending  and  descending  direction,  respectively.
These  are  random  variables,  described  by  their  probability
density functions fA and fD [1/t], respectively.

In  order  to  compute  the  dynamic  effects  due  to  the
interaction  between  the  vehicles,  the  road  pavement  and  the
structure, the respective dynamic masses mA,dyn and mD,dyn [t] are
defined.  These  are  obtained  by  increasing  the  static  masses
through  the  “Dynamic  Load  Allowance”  (DLA),  a
dimensionless coefficient that is a function of the transit speed
v, assumed as being the same for both directions:

(17)

(18)

Failure occurs when the sum of the two dynamic masses
exceeds  the  limit  mass  (ml)  that  can  be  supported  by  the
structure:

(19)

By  substituting  (17)  and  (18)  in  (19),  equation  (20)  is
obtained:

(20)

Or, equivalently (21):

(21)

Where:

•  mtot  =  mA  +  mD  [t]  is  a  new  random  variable,  which
represents the total mass of the two exceptional vehicles;

• g(v) = ml / (1+DLA(v))[t] is a function of transit speed (v),
which represents the limit mass reduced by factor 1+DLA(v) to
account for dynamic effects.

It  is  clear  that  the  “Probability  of  Exceeding  the  Limit
Mass” (Pml) coincides with the probability that the inequality
(21) is true, i.e. with the probability that the random variable
mtot exceeds the value g(v):

(22)

Where   is  the cumulative
 distribution  function  associated  with  the  random variable mtot.

Therefore,  it  is  essential  to  know the  probability  density
function fA+D  [1/t]  associated with the same random variable.
Once a generic value z ϵ R+ of mtot is fixed, it is well known that
the  probability  density  fA+D(z)  associated  with  this  value  is
given by (23):
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 ∙ 

𝐿

𝑣
)
   [ad] 

𝑃𝑒𝑛𝑐 = 1 − 𝑒
− (

𝑄𝑦,𝐴 ∙ 𝑄𝑦,𝐷 

3600 ∙ 𝑛𝑤𝑑 ∙ 𝑑𝑓𝑖
 ∙ 

𝐿
𝑣)

   [ad] 

𝑚𝐴,𝑑𝑦𝑛 = 𝑚𝐴 ∙ ( 1 + 𝐷𝐿𝐴(𝑣) )   [𝑡] 

𝑚𝐷,𝑑𝑦𝑛 = 𝑚𝐷 ∙ ( 1 + 𝐷𝐿𝐴(𝑣) )   [𝑡] 

𝑚𝐴,𝑑𝑦𝑛 + 𝑚𝐷,𝑑𝑦𝑛 > 𝑚𝑙 

(𝑚𝐴 + 𝑚𝐷) ∙ ( 1 + 𝐷𝐿𝐴(𝑣) ) > 𝑚𝑙  

𝑚𝑡𝑜𝑡 > 𝑔(𝑣) 

𝑃𝑚𝑙
= 𝑃(𝑚𝑡𝑜𝑡 > 𝑔(𝑣))  = 1 − 𝐹𝐴+𝐷(𝑔(𝑣))   [𝑎𝑑] 

 𝐹𝐴+𝐷(𝑥) = ∫ 𝑓𝐴+𝐷(𝑧) 𝑑𝑧
𝑥

0
 

(23)𝑓𝐴+𝐷(𝑧) = ∫ 𝑓𝐴(𝑡) 𝑓𝐷(𝑧 − 𝑡)

𝑧

0

𝑑𝑡  [1/𝑡] 
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Indeed, the probability that mA + mD assumes the z value is
given by the sum of the single probabilities  of  the following
events:

(24)

In  order  to  compute  g(v),  the  formalization  and
computation of DLA are requested. This is shown in the next
section.

2.3. Estimation of the “Dynamic Load Allowance” (DLA)

The traffic load, being one of the most important live loads
acting on bridge structures, always produces dynamic effects,
because of the vibration caused by road surface roughness and
vehicle-bridge interactions [15].

Bridges  are  traditionally  designed  using  static  loads  that
are  increased  by  the  “Dynamic  Load  Allowance”  (DLA)  or,
equivalently,  by  the  “Dynamic  Load  Factor”  (DLF).  These
dimensionless  factors  are  functions  of  the  span length or  the
first  flexural  natural  frequency  of  the  bridge,  and  indirectly
incorporate  the  dynamic  effects  of  moving  vehicles  in  the
design  [11].

The  classical  definitions  of  DLA  and  DLF  are  (25)  and
(26), respectively:

(25)

(26)

Where  Rdyn  and  Rstat  are  the  maximum dynamic  response
and the maximum static response of the structure, respectively,
intended as the maximum stress, internal action, deformation or
deflection  in  the  presence  and  absence  of  dynamic
amplification  effects  [9].

Assuming that the structural response is proportional to the
applied  load,  then  DLA  can  be  expressed  in  terms  of  weight
force or, equivalently, in terms of masses:

(27)

Where:

• m is the static mass, i.e. the real vehicular mass;

• mdyn is the “Dynamic Mass”, i.e. a fictitious mass, larger
than the static one, which considers the effects due to dynamic
amplification.

By inverting equation (27), the dynamic mass (mdyn) can be
expressed as a function of the static mass (m) through DLA or
DLF (28):

(28)

Therefore, a model to estimate DLA and DLF is requested.

The  simplest  case  is  the  response  of  a  simply  supported

prismatic  beam  to  a  constant  force  traveling  at  a  constant
speed.  Because  many  bridges  consist  of  simply  supported
girders, this model provides a useful insight into their dynamic
behavior. In this configuration, an estimate of the DLF can be
made through the equation (29), which is derived assuming that
the maximum response occurs when the amplitude of load and
free vibration are added together, assuming that the behavior is
governed only by the first vibration mode [11]:

(29)

Where:

Equation  (29)  is  applicable  when  Ω1<ω1.  The  limit  case
Ω1=ω1 represents the resonance phenomenon between vehicle
and bridge. However, the possibility of resonance can be ruled
out  because  the  loading  exists  only  for  a  limited  number  of
cycles, e.g. only a half-cycle for the first mode. Moreover, as
discussed  in  Appendix  3,  an  extremely  high  load  velocity  is
required for resonance and only a limited amount of energy is
present in the bouncing vehicle as it enters the span. Usually,
the transient frequency (Ω1) is quite small compared with the
natural angular frequency (ω1) [11].

Although  the  previous  model  does  not  consider  many
parameters  (i.e.  road  roughness,  vehicle  weight,  number  of
axles, suspension characteristics, tire characteristics, etc.), it is
adopted  as  a  first  approach  to  the  problem  for  ease.  Further
improvements may be developed in the future.

Natural  angular  frequency  (ω1)  is  related  to  the  natural
fundamental  frequency f1  [Hz]  of  the  beam through equation
(30):

(30)

Fundamental  frequency  determination  should  be  carried
out  through  a  dynamic  modal  analysis  of  the  structure.
However, several studies have shown that the relationship (31)
adequately represents the dynamic behavior of a large range of
bridge decks [16].

(31)

Where  α  [m/s]  is  an  empirical  parameter,  quite  constant
with  span  length  (L),  dependent  on  the  structural  type.  As
illustrated  in  Fig.  (1)  for  simply  supported  structures,  the
constant  value  60  is  indicated  for  prestressed  concrete  box
girder deck units,  while the constant  value 120 is  reasonable

𝑚𝐴 = 𝑡  ⋀  𝑚𝐷 = 𝑧 − 𝑡; ∀𝑡: 0 ≤ 𝑡 ≤ 𝑧 

𝐷𝐿𝐴 =
𝑅𝑑𝑦𝑛  −  𝑅𝑠𝑡𝑎𝑡

𝑅𝑠𝑡𝑎𝑡
   [𝑎𝑑] 

𝐷𝐿𝐹 = 1 + 𝐷𝐿𝐴   [𝑎𝑑] 

𝐷𝐿𝐴 =
𝑚𝑑𝑦𝑛  −  𝑚

𝑚
  [𝑎𝑑] 

𝑚𝑑𝑦𝑛 = 𝑚 ∙ (1 + 𝐷𝐿𝐴) =  𝑚 ∙ 𝐷𝐿𝐹  [𝑡] 

𝐷𝐿𝐹 =
1

1 −
𝛺1
𝜔1

  [𝑎𝑑] 

•  is  the  transient  frequency,  that

is a function of the transit speed v [m/s] and span length L [m];

•  
 is  the  natural  angular

frequency associated with the first vibration mode of the beam,
that is a function of the flexural stiffness EJ [N∙m2], of the span
length L [m] and of the unit mass m [kg/m];

𝛺1 =
𝜋𝑣

𝐿
  [rad/s] 

𝜔1 = √
𝜋4𝐸𝐽

𝐿4𝑚
  [rad/s]

𝜔1 = 2𝜋𝑓1  [rad/s]

𝑓1 ∙ 𝐿 = 𝛼   [𝑚/𝑠] 
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for prestressed concrete girder bridges and composite concrete
slab and steel girder bridges.

As reported in Appendix 4, considering (26), (29), (30) and
(31),  making  the  appropriate  substitutions,  equation  (32)  is
obtained, which gives DLA as a function of only transit speed
(v) and the structural type empirical parameter (α):

(32)

As illustrated in Fig. (2), elaborated by assuming α=60 m/s
and α=120 m/s, the DLA appears to increase with transit speed
(v).  Moreover,  the  results  show  that,  once  a  certain  transit
speed (v) is fixed, DLA increases as the empirical parameter α
decreases.  This  is  reasonable:  indeed,  a  decrease  in  bridge
stiffness, to which the α parameter is strictly correlated, implies
an increase in vehicle-bridge dynamic interaction.

Fig. (1). Experimental relationship between fundamental frequency (f1) and span length (L) for simply supported bridges of different structural types
and interpolation curves for different α values. Elaborated from [16].

Fig. (2). Dynamic Load Allowance (DLA) as a function of transit speed v for different α values.

𝐷𝐿𝐴 =
1

1 −
𝑣

2𝛼

 −  1   [𝑎𝑑] 
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3. RESULTS

In  order  to  illustrate  the  results  that  can  be  obtained
through the developed model, a realistic example is considered,
referred to a simply supported bridge with a span length (L) of
30 m.

Suppose  that  the  structure  is  a  prestressed  concrete  box
girder  deck  unit.  This  implies  that  α  =  60  m/s  is  a  good
representation  of  the  structural  dynamic  behavior.

Assuming that the limit mass associated with an assigned
limit state (i.e. bending ultimate limit state) is 300 t, that could
be a realistic value for a bridge designed in the second half of
the  last  century,  especially  if  it  is  subject  to  a  material
degradation  phenomenon.

Supposing that the annual flow rates in the ascending and
descending  direction  coincide  (Qy,A  =  Qy,D)  and  are  equal  to
300 veh/y;  these  flows  occur  during  260  working  days  (nwd).
Each working day is characterized by a daily flow interval (dfi)
of 8 hours: indeed, generally, exceptional vehicle transit occurs
during night hours only. All these values are realistic for the
main  itineraries  of  highly  industrialized  regions,  such  as
Northern  Italy.

Let  us  assume,  for  ease,  that  the  probability  density

functions (fA  and fD) associated with the random variables mA

and  mD  are  the  same  for  the  ascending  and  descending
direction. It is worth remembering that the random variables mA

and mD are “static masses”. During the processing of the model,
the dynamic effect  is  indirectly considered multiplying these
masses by the Dynamic Load Allowance (DLA) as reported in
equations (17) and (18).

In order to ensure realistic results, these distributions are
defined  by  analyzing  the  data  in  our  possession,  relating  to
single  and  multiple  authorizations  issued  by  the  Province  of
Brescia (Lombardy, Italy). The database contains 3155 records
in the time period between August 2016 and January 2019.

Fig. (3) and Fig. (4) illustrate the individual distributions
(fA and fD) and the compound distribution (fA+D) obtained from
the  analysis,  respectively.  The  amplitude  of  discretization
intervals,  indispensable  to  perform numerical  integrations,  is
set  equal  to  1  t.  The  fA  and  fD  functions  resemble  Gaussian
distributions, with "anomalies" corresponding to mass values
immediately  below  44  t,  which  prove  to  be  the  most  likely.
This  is  due  to  the  contribution  of  those  transports  that  are
exceptional only in terms of size, but not in mass. For the same
reason, the fA+D function shows “anomalies” corresponding to
mass values around 88 t.

Fig. (3). Probability density functions associated with random variables mA and mD, defined by analyzing single and multiple authorizations issued by
the Province of Brescia (Lombardy, Italy).
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Fig. (4). Probability density function associated with a random variable mtot, defined by analyzing single and multiple authorizations issued by the
Province of Brescia (Lombardy, Italy).

Fig.  (5)  illustrates  the  cumulative  distribution  FA+D

associated with random variable mtot. It resembles a Gaussian
cumulative distribution,  with an “anomaly” corresponding to
mass  values  around  88  t,  due  to  those  transports  that  are

exceptional  only  in  terms  of  size.

The results obtained by the application of eqs. (16),  (22)
and (1) are illustrated in Fig. (6) and Fig. (7).

Fig. (5). Cumulative distribution function associated with a random variable mtot, defined by analyzing single and multiple authorizations issued by
the Province of Brescia (Lombardy, Italy)
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Fig. (6). Annual probability of encounter (Penc) and probability of exceeding limit mass (Pml) as functions of transit speed (v).

More precisely, Fig. (6) shows that the annual probability
of  encounter  (Penc)  results  in  a  hyperbolic  decrease  as  transit
speed (v) increases. This is reasonable, because the increase in
speed leads to a reduction in the vehicular permanence time on
the  deck.  Conversely,  the  probability  of  exceeding  the  limit
mass (Pml) shows a growth as transit speed (v) increases; this is
due to the increment in dynamic amplification.

Fig. (7) shows that the annual probability of failure (Pfail),
results  in  an  initially  decreasing  trend  until  it  reaches  a
minimum point  at  a  certain speed which could be defined as
"Optimal Transit Speed" (v0  ),  in this example approximately
equal  to  38  km/h.  Beyond  the  "Optimal  Point",  the  annual
probability of failure begins to increase again.

In  order  to  understand  the  dependence  of  the  annual
probability of failure (Pfail) and the optimal transit speed (v0 ) by
the  main  input  parameters,  a  sensitivity  analysis  was  carried
out, based on varying empirical parameter (α), span length (L),
annual flow rates (Qy,A = Qy,D) and limit mass (ml) individually.

Fig.  (8)  indicates  that,  once  a  certain  transit  speed  (v)  is
fixed, the annual probability of failure (Pfail) decreases as the
empirical parameter (α) increases. This is due to an increase in
the structural stiffness that implies a decrease in the vehicle-
bridge interaction and therefore, a decrease in the DLA. For the
same reason, the optimal transit speed (v0 ) shows an increasing
trend as the empirical parameter (α) increases.

Fig. (7). Annual probability of failure (Pfail) as a function of transit speed (v). The “Optimal Point” is indicated by a black dot.
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Fig. (8). Annual probability of failure (Pfail) as a function of transit speed (v). Sensitivity to empirical parameter (α) variation. The “Optimal Points”
are indicated by black dots.

Fig.  (9)  indicates  that,  once  a  certain  transit  speed  (v)  is
fixed, the annual probability of failure (Pfail) increases as span
length (L) increases. This is due to an increase in the vehicular
permanence  time  on  the  deck,  which  leads  to  a  rise  in  the
encounter  likelihood.  Instead,  no  variation  is  detected  in  the
optimal transit speed (v0  ), which remains constantly equal to
38  km/h.  For  the  sake  of  completeness,  it  should  be
remembered  that  actually  the  bearing  capacity  of  the  bridge,
and therefore the limit mass (ml), tend to increase with the span

length  (L).  The  choice  of  setting  the  same  limit  mass  for
different  bridge  spans  is  dictated  by  the  need to  perform the
sensitivity analysis. To achieve this goal, all parameters other
than (L) must be kept constant, as it is used when calculating
the partial derivative of a multi-variable function.

Similarly, Fig. (10) shows that, once a certain transit speed
(v) is fixed, the annual probability of failure (Pfail) increases as
annual flow rates (Qy,A = Qy,D) increase. Again, no variation is
detected in the optimal transit speed.

Fig. (9). Annual probability of failure (Pfail) as a function of transit speed (v). Sensitivity to the span length (L) variation. The “Optimal Points” are
indicated by black dots.
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Fig. (10). Annual probability of failure (Pfail) as a function of transit speed (v). Sensitivity to the annual flow rate (Qy,A = Qy,D) variation. The “optimal
points” are indicated by black dots.

Fig. (11). Annual probability of failure (Pfail) as a function of transit speed (v). Sensitivity to the limit mass (ml) variation. The “optimal points” are
indicated by black dots.

Conversely, Fig. (11) suggests that, once a certain transit
speed  (v)  is  fixed,  the  annual  probability  of  failure  (Pfail)
decreases as the limit mass (ml) increases. This is attributable to
a reduction in the likelihood of exceeding the limit mass. The
optimal transit speed (v0 ) shows an increasing trend as the limit

mass  (ml)  decreases  which  may  seem  counterintuitive.  To
understand the reasons for this result, let's consider the extreme
case of a bridge characterized by a probability of exceeding the
limit mass (Pml) equal to 1 regardless of the transit speed, i.e. a
structure that is unable to withstand the simultaneous presence
of  two  exceptional  vehicles.  In  this  case,  the  only  way  to
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reduce the probability of failure (Pfail) is to reduce the encounter
probability (Penc) by increasing the transit speed (v).

4. DISCUSSION

A model for evaluating the annual probability of failure of
a  simply  supported  bridge  subjected  to  exceptional  vehicle
transit  has  been  developed.  The  results  demonstrate  the
existence  of  an  “Optimal  Transit  Speed”  that  minimizes  the
risk of  failure.  According to  this  evidence,  the imposition of
very low-speed limits for exceptional vehicles moving on the
deck  may  be  inappropriate.  Conversely,  it  would  be  more
appropriate to define a speed range obtained by imposing an
annual  failure  probability  (Pfail)  that  does  not  exceed  a
“Threshold  Value”  (Pfail,max).

This  threshold  should  be  chosen  according  to  the
maximum risk of failure deemed acceptable for the system. For
example, Eurocode 1 [7] prescribes a 1000 year return period
(Tret)  for  traffic  on  the  main  roads  in  Europe,  which
corresponds  to  an  annual  failure  probability  of  0,001.  This
would imply a certain transit speed range. Obviously, the upper
limit could be only theoretical because it will have to take into
account the other problems related to road safety.

The  developed  model  is  straightforward  and  presents
general validity. Indeed, it allows calculating the probability of
failure as a function of several parameters.  The generality of
the model implies that it can be applied to all simple supported
two-way bridges. Conversely, the estimated “Optimal Transit
Speed” is specific, as it is calculated assuming a certain limit
mass and certain vehicles’ masses distribution. For this reason,
the “Optimal Transit Speed” determined in this article may be
considered  acceptable  only  for  contexts  similar  to  that  here
analyzed. Therefore, the imposition of speed limits related to
exceptional vehicle transit over a bridge should be decreed by
applying  the  proposed  probabilistic  model,  after  a  survey
aimed at determining the site-specific model input parameters,
such  as  heavy  vehicle  flow  rates,  masses’  probability
distribution  functions  and  the  limit  mass  associated  with  the
“Limit  State”  from  which  the  bridge  should  be  safeguarded.
More  precisely,  masses’  probability  distributions  associated
with the vehicular flow acting on the road on which the bridge
is located could be experimentally determined by using weight-
in-motion (WIM) systems placed on the bridge access.

The results illustrated in this article were deduced from a
simplified  model,  regarding  a  simply  supported  single  span
bridge or a single span of an isostatic multiple span bridge. As
a  result,  extensive  experimentation  could  reinforce  the
hypothesis of the inadequacy of very low-speed limits and it
will be investigated in a later study.

Moreover,  future  studies  may  be  carried  out  along  three
research lines in order to consider the effect of the parameters
neglected here.

The first research line concerns the implementation of road
surface  irregularities.  Indeed,  the  roughness  of  the  road
pavement  significantly  affects  the  dynamic  amplification
factors: lower quality profiles result in more significant actions
than “very good” profiles [10]. Moreover, the impact factor is
also influenced by expansion joints. Recent studies have shown

that  expansion  joints  are  one  of  the  main  causes  of  many
defects in bridges. With an increase in gap width, the impact
and possible damage are potentially more serious [17].

The  second  research  line  regards  modeling  vehicle
dynamic  characteristics,  type,  weight,  number  of  axles,  axle
spacing  and  the  horizontal  position  on  the  bridge.  These
parameters have proved to influence the dynamic amplification
factors [9].

The third research line is based on analyzing the effects of
fatigue and material degradation phenomena, which could lead
to a limit mass reduction over time.

CONCLUSION

Finally, further studies may investigate the applicability of
tools capable of managing the transit of exceptional vehicles on
bridges,  for  example,  through  the  implementation  of  ITS
(Intelligent  Transportation  Systems)  technologies  based  on
GPS  and  telecommunication  devices.  For  instance,  these
technologies  help  in  tracking  the  movement  of  trucks  as  it
happens in other transportation fields [18, 19]. In addition, the
implementation  of  truck-specific  traffic  signals  and  Closed-
Circuit  Television  Cameras  (CCTV),  having  the  purpose  of
avoiding the presence of an excessive load on the deck, may be
further investigated. These are noteworthy solutions, certainly
more  expensive  and  time-consuming  than  the  simple
imposition of a vehicle transit speed, the suitability of which
should be assessed in relation to economic resources available
to  the  bridge  management  authorities.  These  research  topics
will have great relevance for future smart mobility.
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APPENDIX 1

In this appendix, the proof of the Poisson Limit Theorem
(i.e., equation (13)) is provided.

In  a  binomial  process  (i.e.,  an  experiment  in  which each
trial can have only two outcomes, called success and failure) of
N trials, the probability P(x) that an event will occur exactly x
times is provided by the binomial distribution (12):
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(12)

Where p is the probability of success in a single trial.

Let  us  define  the  quantity  λ  =  p∙N,  which  represents  the
most probable number of successes in N trials and substitute it
in equation (12):

(33)

Let us calculate the limit for N, which tends to infinity:

(34)

Let us develop the factorial term:

(35)

Now  it  is  possible  to  simplify  the  terms  (N-x)!  to  the
numerator  and  denominator  of  the  first  fraction:

(36)

As N  tends  to  infinity,  the  term N(N-1)  (N-2)  ....(N-x+1)
tends to N x, so equation (37) can be written:

(37)

APPENDIX 2

In this appendix, the proof of equation (15) is provided.

The probability that the encounter event will occur at least
once during the reference period is provided by equation (14):

(14)

Given equation (11), by substituting x = 0, equation (41) is
obtained:

(41)

Considering equation (10),  the parameter λ = p∙N  can be
expressed as:

(42)

By substituting equations (7) and (8) in (42), equation (43)
is obtained:

(43)

By substituting equations (5) and (6) in (43), considering
that  n=(3600∙dfi)/∆t  and  N=Tref  /  ∆t,  the  equation  (44)  is
obtained:

(44)

By substituting equations (4) and (3) in (44), the equation
(45) is obtained:

(45)

By  substituting  equation  (45)  in  (41),  equation  (15)  is
obtained:

(15)

APPENDIX 3

In  this  appendix,  the  potential  onset  of  the  resonance
phenomenon  is  discussed.

From  equation  (29)  is  evident  that  as  the  transient
frequency (Ω1)  tends  to  natural  angular  frequency (ω1),  DLF
tends to infinity. Indeed:

(46)

This  limit  case  represents  the  resonance  phenomenon
between  vehicle  and  bridge.  However,  the  possibility  of
resonance can be ruled out because the loading exists only for a
limited  number  of  cycles,  e.g.  only  a  half-cycle  for  the  first
mode.

Moreover, an extremely high load velocity (vres) is required

𝑃(𝑥) = (
𝑁
𝑥

) 𝑝𝑥(1 − 𝑝)𝑁−𝑥 =
𝑁!

𝑥! (𝑁 − 𝑥)!
𝑝𝑥(1 − 𝑝)𝑁−𝑥   [𝑎𝑑] 

𝑃(𝑥) =
𝑁!

𝑥! (𝑁 − 𝑥)!
(

 𝜆

𝑁
)

𝑥

(1 −
 𝜆

𝑁
)

𝑁−𝑥

 

 

𝑃(𝑥) = lim
𝑁→∞

 
𝑁!

𝑥! (𝑁 − 𝑥)!
(

 𝜆

𝑁
)

𝑥

(1 −
 𝜆

𝑁
)

𝑁−𝑥

=
𝜆𝑥

𝑥!
 lim
𝑁→∞

𝑁!

(𝑁 − 𝑥)!
(

 1

𝑁
)

𝑥

(1 −
 𝜆

𝑁
)

𝑁

(1 −
 𝜆

𝑁
)

−𝑥

 

 

𝑃(𝑥) =
𝜆𝑥

𝑥!
 𝑙𝑖𝑚
𝑁→∞

𝑁(𝑁 − 1)(𝑁 − 2). . . . (𝑁 − 𝑥 + 1)(𝑁 − 𝑥)!

(𝑁 − 𝑥)!
(

 1

𝑁
)

𝑥

(1 −
 𝜆

𝑁
)

𝑁

(1 −
 𝜆

𝑁
)

−𝑥

 

𝑃(𝑥) =
𝜆𝑥

𝑥!
𝑙𝑖𝑚

𝑁→∞

𝑁(𝑁 − 1)(𝑁 − 2). . . . (𝑁 − 𝑥 + 1)

𝑁𝑥
(1 −

 𝜆

𝑁
)

𝑁

(1 −
 𝜆

𝑁
)

−𝑥

 

𝑙𝑖𝑚
𝑁→∞

𝑁(𝑁 − 1)(𝑁 − 2). . . . (𝑁 − 𝑥 + 1)

𝑁𝑥
= 1 

Moreover, as N tends to infinity,  even  the  term 
tends to 1, that is:

(38)

By substituting equations (37) and (38) in (36),  equation
(39) is obtained:

(39)

Defining   and  substituting  in  equation  (37),
the equation (40) is obtained, that is the proof of Poisson Limit
Theorem (i.e, equation (13)):

(40)

Where   is  the  notable  limit  of  the
exponential.

(1 −
 𝜆

𝑁
)

−𝑥

𝑙𝑖𝑚
𝑁→∞

(1 −
 𝜆

𝑁
)

−𝑥

= 1 

𝑃(𝑥) =
𝜆𝑥

𝑥!
 𝑙𝑖𝑚
𝑁→∞

(1 −
 𝜆

𝑁
)

𝑁

 

𝑡 = −
𝑁

𝜆
 

𝑃(𝑥) =
𝜆𝑥

𝑥!
 𝑙𝑖𝑚
𝑁→∞

(1 +
 1

−
𝑁
𝜆

)

𝑁

=
𝜆𝑥

𝑥!
 𝑙𝑖𝑚
𝑡→∞

(1 +
 1

𝑡
)

−𝜆𝑡

=
𝜆𝑥

𝑥!
 [𝑙𝑖𝑚

𝑡→∞
(1 +

 1

𝑡
)

𝑡

]

−𝜆

=
𝜆𝑥

𝑥!
𝑒−𝜆 

𝑙𝑖𝑚
𝑡→∞

(1 +
 1

𝑡
)

𝑡
= 𝑒

𝑃(𝑥 ≥ 1) = 1 − 𝑃(0) 

𝑃(𝑥 ≥ 1) = 1 − 𝑒−𝜆 

𝜆 = 𝑝𝐴 ∙ 𝑝𝐷 ∙ 𝑁 

𝜆 =
𝑄𝑑,𝐴

𝑛
∙

𝑄𝑑,𝐷

𝑛
∙ 𝑁 

𝜆 =

𝑄𝑦,𝐴

𝑛𝑤𝑑

3600 ∙ 𝑑𝑓𝑖
∆𝑡

∙

𝑄𝑦,𝐷

𝑛𝑤𝑑

3600 ∙ 𝑑𝑓𝑖
∆𝑡

∙
𝑇𝑟𝑒𝑓

∆𝑡
=

𝑄𝑦,𝐴 ∙ 𝑄𝑦,𝐷

𝑛𝑤𝑑
2

∙
∆𝑡

(3600 ∙ 𝑑𝑓𝑖)2
∙ 𝑇𝑟𝑒𝑓 

𝜆 =
𝑄𝑦,𝐴 ∙ 𝑄𝑦,𝐷

𝑛𝑤𝑑
2

∙

𝐿
𝑣

(3600 ∙ 𝑑𝑓𝑖)2
∙ 3600 ∙ 𝑑𝑓𝑖 ∙ 𝑛𝑤𝑑 ∙ 𝑛𝑦 =

𝑄𝑦,𝐴 ∙ 𝑄𝑦,𝐷 ∙ 𝑛𝑦

3600 ∙ 𝑛𝑤𝑑 ∙ 𝑑𝑓𝑖
∙

𝐿

𝑣
 

𝑃(𝑥 ≥ 1) = 1 − 𝑒
−

𝑄𝑦,𝐴∙𝑄𝑦,𝐷∙𝑛𝑦

3600∙𝑛𝑤𝑑∙𝑑𝑓𝑖
∙
𝐿
𝑣 

𝑙𝑖𝑚
𝛺1→ 𝜔1

𝐷𝐿𝐹 = 𝑙𝑖𝑚
𝛺1→ 𝜔1

1

1 −
𝛺1

𝜔1

= ∞ 



236   The Open Transportation Journal, 2020, Volume 14 Ventura et al.

for resonance. Indeed, the limit condition Ω1 = ω1 implies that:

(47)

Assuming, for example, α=60 m/s, it would imply that vres

= 120 m/s  = 432 km/h,  which is  much higher  than the usual
operating speeds.

APPENDIX 4

In this appendix, the proof of equation (32) is provided.

By rewriting equation (26), the DLA can be expressed as a
function of DLF:

(48)

Substituting the estimate of the DLF provided by equation
(29), equation (49) is obtained:

(49)

Transient frequency (Ω) and natural angular frequency (ω1)
can be expressed, respectively, as indicated in equations (50)
and (51):

(50)

(51)

By inverting equation (31), equation (52) is obtained:

(52)

By  substituting  equations  (50),  (51)  and  (52)  in  (49),
equation  (32)  is  obtained:

(32)
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