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Abstract:
Introduction:
Despite the traffic barriers effectiveness in reduction of the severity of run-off road crashes, the severity of barrier crashes still accounts for a
significant fraction of road fatalities. Although extensive research has already been conducted in studying traffic barrier crashes, those studies
mostly either consider the severity or frequency of crashes. Here, the equivalent property damage only (EPDO) was used to account for both
aspects of crashes. While modeling EPDO crashes, there are challenges associated with that type of dataset including its sparse distribution, and the
presence of heterogeneity in the dataset due to aggregation of various crash types.

Methods:
Ignoring the sparse nature of the data might result in biased or even erroneous results. Thus, in this study we identify factors to barriers EPDO
crashes while considering the discussed challenges. Those consideration are especially important as in the next step we will employ the modeling
results for conducting the cost-benefit analysis. Two main methods were considered in this study to address the discussed challenges including
parametric and non-parametric Bayesian hierarchical models. A semiparametric Bayesian approach was used to relax the normality assumption by
using a mixture of multivariate Dirichlet prior, defining a flexible nonparametric model for the random effects’ distribution, and using grouping to
account for the heterogeneity due to the structure of the dataset. On the other hand, Bayesian hierarchical models with two distributions of Poisson
and  negative  binomial  with  similar  levels  of  hierarchy  were  considered.  These  models  were  chosen  as  closest  models  to  the  Bayesian
semiparametric model. The incorporated models were compared in terms of deviance information criterion (DIC).

Results and Discussion:
The results highlighted that although the semi-parametric method outperforms the Bayesian hierarchical model with Poisson distribution, the
Bayesian hierarchical model with negative binomial (NB) distribution outperform the semi-parametric model. The findings might be related to the
severe sparse nature of the EPDO, which cannot optimally be accounted by semiparametric approach, and the model needs more flexibility.

Conclusion:
It was found that being unrestrained, driving in interstate system, driving in clear weather, light conditions, and driving in a higher traffic all
increase the likelihood of EPDO crashes.  Also,  while some predictors were significant in less accommodative models of semi-parametric or
Poisson models, they were not for Negative binomial model.
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1. INTRODUCTION

Road  crashes  claim  many  lives  yearly,  resulting  in  a
tremendous economic loss. For instance, more than 1 million
people die every year from traffic crashes, and 50 million more
are severely injured [1]. Crashes are the leading causes of death
in the U.S, falling behind only cancer and heart diseases [2].
The  situation  is  of  particular  concern  in  a  mountainous  area
like  Wyoming, with  one of  the highest  fatalities  rates  in the
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country [3]. One of the leading causes of this high crash fatality
rate in the state is run-off-the-road (ROTR) crashes, resulting
from  factors  such  as  mountainous  and  adverse  weather
conditions  in  winter.

Traffic barriers are a popular countermeasure for reducing
roadside crashes' severity. Traffic barrier crashes are identified
as the third most common cause of fixed object fatalities after
trees and utility poles [4]. However, still, the severity of these
crashes persists.

Given  the  importance  of  traffic  barrier  crashes,  studies
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have  been  already  conducted  to  identify  factors  of  these
crashes  [5,  6].  Despite  the  efforts,  few  studies  have  been
conducted  considering  both  aspects  of  barrier  crashes,
including  their  severity  and  frequency.

There  are  still  challenges  associated  with  modelling
equivalent  property  damage  only  (EPDO)  crashes,  including
the sparse nature of crashes that traditional inferences could not
model.  The second challenge,  which is  common across most
crash datasets, is accounting for the unobserved heterogeneity
resulting  from  the  dataset's  structure,  such  as  traffic  barrier
types.

In  order  to  address  the  first  challenge  of  data  response
sparsity and to have valid results, greater modelling flexibility
and  robustness  against  misclassification  of  a  model
specification  are  needed  [7].  In  the  Bayesian  context,  the
flexibility might be given through infinitely many parameters
[8].

The  second  issue  is  not  accounting  for  hierarchical
structure, which might violate the assumption of independent
residuals. That is since observation nested in the same group,
or  barrier  types,  share  similar  characteristics,  and  the  model
should account for them.

In this study, to evaluate the impact of various factors on
the EPDO crashes, the analysis was conducted on the baseline
distribution using the mixture Dirichlet process (MDP) prior,
which  is  centered  in  a  standard  parametric  family,  or  the
Poisson distribution. The Bayesian hierarchical Poisson (BHP)
model was used as a starting parametric model to account for
the  stochastic  variation  of  crash  count  data.  Also,  Bayesian
hierarchical  models  with  two  distributions,  Poisson  and
Negative  binomial,  were  compared  with  the  Bayesian
semiparametric  method.

However,  crash  count  typically  shows  more  variation
around theoretical distribution. The situation is more critical if
the  objective  is  to  model  the  EPDO  instead  of  crash  count.
Thus,  the  Bayesian  hierarchical  negative  binomial  (HNB)
model was considered for modelling the sparse EPDO crashes.
To  provide  a  better  perception  of  various  barrier  types,  the
included types are presented in Fig. (1).

The  following  paragraphs  will  review  few  studies  that
implemented semi-or non-parametric methods in the literature
review. Then this study will present studies using hierarchical
techniques.

1.1. Semi-or Non-Parametric Methods

Various  semiparametric  [9]  and  non-parametric  methods
have been proposed for modelling sparse datasets [10 - 12]. For
instance,  a  study  was  conducted  to  estimate  the  relationship
between  crash  counts  and  roadway  characteristics  [13].  A
semiparametric  Poisson-gamma  model,  with  standard
parametric assumption, was employed for the analysis; in that
study, a quadratic regression spline was used for selecting the
knot  points.  In  another  study,  a  semiparametric  count  data
model  was  used  to  deal  with  the  issue  of  individual
heterogeneity,  including temporal  and spatial  correlation and
nonlinear  covariate  effects  [14].  The  study  used  regression
splines  with  the  negative  binomial  model  for  data  related  to
automobile insurance claims.

Most  past  studies  employed  both  Poisson  and  negative
binomial  models  for  modelling  count  data;  those  models
assume  an  uncorrelated  observation  resulting  in  ignoring  a
correlation across groups. However, the hierarchical modelling
of  the  above  approaches  could  be  used  to  account  for
correlation  across  groups  in  the  dataset.

1.2. Bayesian Hierarchical Model

A previous study used Bayesian hierarchical models with
various  variables  as  hierarchies  to  analyze  the  corridor-level
safety  of  an  intersection  [15].  The  Hierarchical  negative
binomial (HNB) model was solely used in that study. Another
study  evaluated  road  network  safety  using  Bayesian
hierarchical modelling [16]. The result was compared with the
standard  negative  binomial  model,  showing  that  the
hierarchical  modelling  outperforms  the  other  model.

A recently finite mixture model has been employed in the
context of random effect and Bayesian hierarchical techniques
to  assign  an  objective  hierarchy  to  the  model,  instead  of  a
subjective choice [17]. For instance, the Bayesian hierarchical
finite mixture model was used for modelling sparse crash data.
In  that  technique,  an objective hierarchy was used through a
finite mixture model, resulting in a significant enhancement in
model  fit.  In  another  study,  a  comprehensive  discussion was
made  regarding  the  application  of  various  methods  for  the
evaluation of sparse datasets [18]. After conducting different
goodness-of-fit  measures,  a  hurdle  model  was  proposed  to
accommodate  observations  with  zero  crashes  and  to  account
for a sparse distribution of EPDO crashes.

Fig. (1). Examples of included barriers.
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This  study  implements  the  hierarchical  Bayesian  models
with  two  distributions,  Poisson  and  negative  binomial.
Compared  with  the  Poisson  model,  a  negative  binomial  can
handle  overdispersion  due  to  an  introduced  error  term.
However, the Poisson model was also used as a starting point
for modelling stochastic variation of barrier EPDO counts.

It should be noted that not accounting for overdispersion
by  the  suitable  model  might  result  in  underestimating  the
variance of the estimated parameters. Although many studies
implemented  classical  versions  of  Poisson  and  negative
binomial  models  in  highway  safety  [19  -  22],  not  that  much
research has been conducted using a hierarchical approach of
those methods for modelling crash counts. Consequently, that
could result in an inaccurate conclusion by underestimating the
variability of the data.

1.3. Research Question

Important questions would be raised while implementing
semiparametric methods:

How good is the semiparametric model in predicting
sparse response?
How  is  the  semiparametric  model  performance
compared with similar advanced parametric modelling
techniques  that  could  account  for  the  dataset's
structure?

In  this  study,  besides  checking  the  performances  of  the
model deviance information criterion (DIC), the models were
compared in terms of changes in magnitudes, significance and
estimated parameter variances. After highlighting the best fit
model, the identified results are used as means of interpretation
for policy making in the state.

2. METHODOLOGY

This  section  highlights  the  implemented  methods  of
Bayesian  semiparametric  and  parametric  techniques.

2.1. Bayesian Semiparametric Method

The parametric model might not be able to account for the
sparse nature of the response, and the unrealistic nature of the
assigned distribution might result in biased and unsatisfactory
results.  For  this  scenario,  non-  or  semiparametric  methods
could be  used to  gain  robustness  against  misclassification of
the  parametric  distributions.  This  could  be  achieved  in  the
Bayesian  context  by  placing  a  prior  distribution  on  infinite
dimensions or all probability distribution space. The Dirichlet
process  (DP)  has  been  widely  used  in  the  probability
distribution  space  to  create  a  semiparametric  model  [23].

·  When  random effects  follow a  multivariate  normal
distribution, the monotonic differentiable link function
could be written as follows [7]:

(1)

Where ηij  is  a linear predictor,   are
p-  and q-dimensional  design vectors,  βR  and βF  are  means of

random and fixed effects, and bi represents the subject-specific
deviation from the mean.

In  order  to  avoid  the  effects  of  the  misspecification  of
parametric  random  effects  distribution  and  a  better
representation  of  the  distributional  uncertainty,  a  Bayesian
semiparametric  model  could  be  used  to  incorporate  a
probability  model  for  the  random  effects  [7].  For  this,  the
parametric assumption would be relaxed as follows:

(2)

where

(3)

Where H is probability distribution such as DP. It should
be  noted  that  if  the  mean of  the  estimates  comes  from some
prior  distribution G(.),  and the  prior  distribution is  uncertain
and modelled  as  DP,  then  the  data  also  come from Dirichlet
mixture of normal [24].

However,  the  location  of  G  is  confounded  by  βR,  and  as
more  data  are  available,  the  posterior  mass  would  no  longer
concentrate on a point in the model, which makes the analysis
difficult  [7].  So,  to  address  this  issue,  the  following  re-
parameterizations  are  considered,  and  equations  1,  2,  and  3
could be transformed to the below equations [25]:

(4)

(5)

(6)

Where βF is transformed to β, while βR+bi are transformed
to θi, and non-parametric G is centered at Nq(µ, ∑) distribution.
The precision or total mass parameter, alpha, of the DP prior
could be considered random, having a gamma distribution (see
equation  9).  mub  is  the  mean  of  the  normal  baseline
distributions, which is set as Poisson distribution, while sigmab
gives a variance matrix of the normal baseline distributions.

Priors, similar to the parametric method, need to be set for
the  Bayesian  semiparametric  method.  As  semiparametric
method has  more  parameters  than  parametric  methods,  more
priors  need to be set.  Thus,  it  is  important  to know what the
characteristics of some of the prior distributions are:

(7)

(8)

(9)

where  Γ  and  IW  are  Gamma  and  inverted  Wishart
distributions,  respectively,  or  the  conjugate  prior  for  the
covariance  matrix  of  the  multivariate  normal  distribution,
respectively.  a,  b  provide  the  hyperparameters  for  gamma
distribution.  β  and  Sβ0  are  calculated  as  coefficients  of  fixed
effects, and could be calculated from the variance-covariance
matrix  of  a  fitted  model  by  generalized  linear  mixed  model,
with penalized Quasi-likelihood; also α and b, V and T were set
as 1,1,3 and I, respectively [7].

The  coefficients  of  βs  are  given  independent  non-

𝜂𝑖𝑗 = 𝑥𝑖𝑗
𝑇 𝛽𝐹 + 𝑧𝑖𝑗

𝑇 𝛽𝑅 + 𝑧𝑖𝑗
𝑇 𝑏𝑖 

𝑥𝑖𝑗 ∈ ℝ𝑝  and 𝑧𝑖𝑗 ∈ ℝ𝑞 

𝑏1, . . . , 𝑏𝑚|𝐺~𝐺, 

𝐺|𝐻~𝐻 

𝜂𝑖𝑗 = 𝑥𝑖𝑗
𝑇 𝛽 + 𝑧𝑖𝑗

𝑇 𝜃𝑖 , 

𝜃1, . . . , 𝜃𝑚|𝐺~ 𝐺, 

𝐺~𝐷𝑃(𝑎𝑙𝑝ℎ𝑎, 𝑁(𝑚𝑢𝑏, 𝑠𝑖𝑔𝑚𝑎𝑏) 

𝛽~𝑁𝑃(𝛽0, 𝑆𝛽0
) 

 Σ|𝜈0, 𝑇~𝐼𝑊𝑘(𝜈0, 𝑇), 

𝛼|𝑎0, 𝑏0~Γ(𝑎0, 𝑏0) 
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informative  or  vague  priors  of  N  (0,Sβ0  =  1000).  Alpha  is  a
precision parameter highlighting the prior concentration for G
(.) related to DP [26]. Alpha, the precision parameter was set as
10 to allow a moderate deviation from a Poisson family [8].

An analysis was conducted with the help of the Bayesian
semiparametric generalized linear mixed model [7]. Both fixed
and  random  effects  could  be  specified  in  the  syntax  of  the
model.  The  random  effects  could  be  set  for  specifying  a
grouping or hierarchical level of the model, being set for traffic
barrier  types.  The  number  of  burn-in  scans,  the  thinning
interval, and the number of total scans to be saved were set as
5000, 19, and 5000, respectively.

2.2. Bayesian Hierarchical Modeling

As the semiparametric model used grouping variables in its
modelling  process,  the  hierarchical  modelling,  with  various
distributions,  was  identified  as  the  closest  model  for
comparison.  Two  hierarchal  count  models  with  Poisson  and
Negative  binomial  distributions  were  compared  with  the
semiparametric  approach.

These  regression  models  are  generalized  linear  models
(GLM) with log as a canonical link function. The Poisson uses
a log link with E[yi|Xi] = λi, which is the conditional mean, and
the linear predictor µi as follows:

(10)

For  the  negative  binomial,  the  distribution  of  this  model
could be defined with two parameters p and r. To account for
non-normal  distribution  of  the  Negative  binomial,  the
overdispersion parameter of r is considered. Where the former,
p,  is  referred  to  a  success  parameter,  and  for  observation  i
defined as:

(11)

The  results  of  the  analyses  could  be  converted  into  an
equation as follows:

(12)

In  the  above  equation  γ00  Is  the  population  intercept
averaged across various levels of barrier types, p  is levels of
traffic barriers, varies from 1 for box-beam to 3 as a w-beam
barrier.  γip  is  related  to  barrier  intercept,  based  on  various
barrier levels. βks are the coefficients varying from 1 to 12. xki is
the  vector  of  observations  related  to  kth  coefficient  being
considered, and i is an observation number. It should be noted
that the same equation is used for both negative binomial and
Poisson models, and the estimated coefficient varies based on
different considered distributions.

The non-informative priors with multivariate Normal prior
with a mean of zero and very high variance were considered
for all predictors for the two parametric models. As precision
needs to be specified in the syntax of the model, this value is
specified as 

The  choice  of  non-informative  prior  distribution  for  a
variance  parameter  could  have  a  big  impact  on  inference,
especially  in  problems  where  the  number  of  groups  is  small
[26]. Inverse-gamma has been used for the unknown variance
of a normal distribution for non-informative prior [27]. Weak
non-informative  inverse-gamma  was  used  for  variance  as
p(σα

2)~inverse - gamma (0.001,0.001) [28]. For over dispersion
parameter, r, a uniform prior was used with an upper bound of
50.

Draws  were  attained  from  3  MCMC  chains,  each
consisting of 15,000 draws, where the first 5,000 were burned
or discarded. The mixing of the chains was assessed, and then
the draws were combined for a total of 30,000. Also, the 95%
percentile interval was obtained from these draws. Model terms
were assessed using percentile or credible intervals. Posterior
summaries involve the mean, standard deviation.

It  is  worth  emphasizing  that  the  benefit  of  hierarchical
Bayesian  inference  is  that  it  does  not  focus  on  providing  an
independent estimator on each subset but considers the dataset
as a whole. “Just Another Gibbs Sampler” (JAGS) package in
R was used for the Bayesian hierarchical model using MCMC
[29].

2.3. Data

Information from various sources was aggregated to build
the dataset. Crash data, including various crash features, such
as vehicles and drivers’ characteristics, were collected from the
Wyoming  Department  of  Transportation  (WYDOT).  As  this
dataset  did not include roadside geometric characteristics,  so
data are collected and aggregated to traffic  barrier  data from
the  information  related  to  more  than  a  million  feet  of  traffic
barrier.  That  dataset  contains  information  related  to  barrier
length,  height,  and  offset.  The  Wyoming  roads  map  is
presented in Fig. (2) to provide a summary of the road sketch
in the state.

Fig. (2). Road map of the Wyoming.

Crashes  were  filtered and aggregated to  a  barrier  dataset
based  on  road  IDs  and  roadway  mileposts.  Only  a  single
vehicle involved in barrier crashes was included in the dataset
as  there  are  expected  many  confounding  factors  in  case  of
multiple  vehicle  crashes.  Crashes  were  incorporated  in  the
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analysis  if  only  they  occurred  between  2007  and  2017.  That
timeframe consideration is due to the lack of availability of a
more recent dataset.  The continuous predictor of the average
annual daily traffic (AADT), length of barriers, and highway
classifications were incorporated into the analysis to account
for the exposure.

In total, the dataset included 1,923 barriers with a total of

18,502  EPDO  crashes,  where  the  majority  of  barriers  are
related  to  boxing  beam  barriers.  The  included  predictors  in
Table  1  underwent  a  primary  screening,  and  the  identified
predictors  were  found to  be  significant  at  least  in  one of  the
included  models.  The  EPDO  is  calculated  based  on  the
WYDOT  as  the  following  equation:  The  shoulder  width  is
transformed  to  a  categorical  format  based  on  a  width  that
divides  this  predictor  into  almost  two  equal  categories.

(13)

As  can  be  seen  from  Table  1,  the  data  response  is  very
sparse,  with  a  wide  variance  and  a  large  gap  between  a
minimum  value  of  one  and  a  maximum  of  555.

3. RESULTS

In order to identify the best-performed model in analyzing
crash  EPDO,  DIC was  used  for  comparing  various  Bayesian
models.  Similar  structures  with  similar  predictors  were
incorporated  in  all  models.  First,  this  section  goes  over  the
Bayesian  semiparametric  method and  then  discusses  the  two
Bayesian hierarchical techniques.

3.1. Bayesian Semiparametric Method

For modelling EPDO based on a semiparametric Bayesian

model,  it  was  found  that  all  the  predictors  are  essential  in
predicting  the  EPDO  crashes  see  Table  2.  As  mentioned
earlier,  it  should  be  emphasized  that  the  included  predictors
have already undergone a primary screening.

Here  the  random effect,  or  grouping variable,  was set  as
the  barrier  types.  The  results  show  95%  highest  posterior
density (HPD) interval using the MCMC technique [30]. The
results  are  primarily  intuitive  and  expected.  Speed
involvement,  improper  restrain,  and  alcohol  involvement  all
are  associated  with  higher  EPDO.  As  for  the  environmental
conditions,  the  results  indicated  that  in  less-than-optimal
conditions,  dark  and  non-clear  weather  conditions,  the
likelihood of higher EPDO decreases compared with optimal
conditions.  Higher  AADT  and  higher  barrier  length  are
associated  with  higher  EPDO  due  to  higher  exposure.

Table 1. Summary statistics of the considered predictors.

Variable Names Mean Variance Min Max
Response: EPDO 9.6 37.383 1 555
Barrier types;1*:box-beam,2:concrete,3:W-beam
Box beam: 1,269 (66%), concrete=75 (4%), W-beam=579 (30%)

1.6 0.916 1 3

Gender: male * versus female 0.3 0.395 0 1
Speed involvement: speeding was exceeded the posted speed limit, versus speed was within the recommended
speed *

0.5 0.419 0 1

Weather condition: clear* (vs. others) 0.5 0.424 0 1
Barrier height, in inch 30 3.106 20 54
Shoulder width greater than 5.5 ft* (vs. others) 0.4 0.494 0 1
Lighting condition: light* (vs. dark) 0.4 0.413 0 1
AADT 2,468 1,646 27 8,853
Length, in ft 761 1490.201 14.396 35,471
highway classification, non-interstate system* (vs. highway) 0.5 0.497 0 1
* Reference category.

Table 2. Modeling results based on Bayesian semiparametric method.

Mean SD HPD, Lower HPD, Upper
(Intercept) 1.37 0.416 0.547 2.2
Restrain conditions 1.13 0.0202 1.09 1.17
Gender -0.2 0.021 -0.309 -0.226
Speed involvement 0.2 0.0195 0.121 0.196
Weather condition -0.5 0.0204 -0.636 -0.556
Barrier height 0.4 0.035 0.353 0.49
Shoulder width -0.5 0.135 -0.794 -0.264
Alcohol involvement, no alcohol involvement* 0.9 0.025 0.895 0.993

 
𝐸𝑃𝐷𝑂 𝑟𝑎𝑡𝑒 = 𝐹𝑎𝑡𝑎𝑙 𝑐𝑟𝑎𝑠ℎ𝑒𝑠 + 𝑠𝑢𝑠𝑝𝑒𝑐𝑡𝑒𝑑 𝑠𝑒𝑟𝑖𝑜𝑢𝑠 𝑖𝑛𝑗𝑢𝑟𝑦 + 𝑠𝑢𝑠𝑝𝑒𝑐𝑡𝑒𝑑 𝑚𝑖𝑛𝑜𝑟 𝑖𝑛𝑗𝑢𝑟𝑦 + 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑖𝑛𝑗𝑢𝑟𝑦 + 𝑈𝑛𝑘𝑛𝑜𝑤𝑛

𝑃𝐷𝑂=277 × 𝑃𝐷𝑂 + 13 × 𝑃𝐷𝑂 + 4 × 𝑃𝐷𝑂 + 4 × 𝑃𝐷𝑂 + 4 × 𝑃𝐷𝑂 + 1 × 𝑃𝐷𝑂 
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Mean SD HPD, Lower HPD, Upper
Lighting condition -0.3 0.0197 -0.334 -0.257
AADT, continuous 7E-05 5.35E-06 6.39E-05 8.47E-05
Length of barrier, continuous 0.11 1.43E-06 1.07E-04 1.13E-04
Highway classification -0.35 0.0207 -0.391 -0.31
Barrier height × shoulder width 0.13 0.053 0.0181 0.227
Baseline distribution
muB 1.3 0.641 0.0756 2.620
SigmaB 0.4 0.606 0.053 1.1603
Model's performance: Dhat=52097.06, pD=15, DIC=52,127

Fig. (3). Trace plot and the posterior mean (95% HPD intervals) for lighting condition (top), highway classification (bottom).

It  is  also  found  that  the  impact  of  shoulder  width  and
barrier height on EPDO should not be separated but considered
an interaction term between these two predictors. This model's
goodness of fit parameter is presented at the bottom of Table 2.
In  addition,  the  estimates  of  the  baseline  distribution  are
presented  in  Table  2.  It  should  be  noted  that  the  mean  of
baseline distribution corresponds to the intercept mean of the
model. Dbar is the posterior mean of deviance, while Dhat is
the point estimate of the deviance. pD is the effective number
of parameters, which is estimated by Dbar-Dhat, and DIC is the
Deviance  Information  Criterion,  which  could  be  written  as
Dbar + pD or Dhat + 2 pD.

To evaluate the performance of the Metropolis Hasting (M-
H)  algorithm  and  to  gain  an  insight  into  how  the  results  in
Table  2  are  obtained,  the  trace  plot  and  density  of  two
predictors, as an example, are provided in Fig. (3). The Trace
plot is an essential tool for assessing the mixing of a chain. The

convergence could be confirmed if the plot does not stay in the
same  state  for  too  long  and  when  there  are  not  too  many
consecutive steps in one direction.

The trace plot indicated that the chain is stable from each
predictor resulting from MCMC. The plots on the right are the
95% HPD regions in the density plot and the posterior mean.
The  plots  are  based  on  generated  posterior  semiparametric
using  Dirichlet  process  mixture  of  normal  priors  for  the
random  effects  distribution.  The  density  is  estimated  by
employing  DPM-mixtures  models  [24].  For  instance,  the
posterior mean (95% HPD interval) for the lighting condition is
-0.30,  matching  the  value  in  Table  2.  The  same  explanation
would apply to highway classification, the bottom figures.

3.2. Bayesian Hierarchical Technique

Two Bayesian hierarchical  models  were conducted to  be
compared  with  the  Bayesian  semiparametric  method  and  to

(Table 2) contd.....
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find  the  best  technique  for  modelling  EPDO crashes.  As  the
Poisson model is often considered a base model for conducting
a count model, it is also considered in the comparison process.

3.3. Bayesian Hierarchical Poisson Model
The  results  of  the  Bayesian  hierarchical  model  with  a

distribution  of  Poisson  are  presented  in  Table  3.  Although
many  similarities  can  be  observed  between  Bayesian
semiparametric  and  Poisson  models  in  terms  of  signs  of  the
coefficients,  the  magnitudes  of  the  coefficients  vary  across
these two models.

The  deviance  of  the  model  is  presented  at  the  bottom of
Table 3. The DIC value is greatly increased by implementing
the Poisson hierarchical model,  54,842 versus  52,127 for the
semiparametric model. This is expected as the Poisson model
does  not  accommodate  the  overdispersion  or  the  more
significant variance compared with the mean values. However,
the equal mean and variance relationship could be relaxed for
semiparametric, resulting in a better fit.

3.4. Bayesian Hierarchical Negative Binomial Model
While  for  Poisson  distribution,  mean  and  variance  are

equal, for negative binomial, variance is a quadratic function of
the  mean.  This  model  was  primarily  conducted  with  the
Bayesian  semiparametric  method  to  see  which  model  could
better accommodate the overdispersion. The directions of the
coefficient  of  this  model  are  in  line  with  Poisson  and  the
semiparametric  method.  However,  the  significance  and
magnitudes  of  the  coefficients  have  been  changed  while
moving  to  a  more  flexible  modelling  distribution.

As can be seen from the presented results in Table 4, while
the impacts of coefficients of gender, speed involvement, and
interaction of shoulder width and barrier height were identified
as  significant  in  Poisson  and  semiparametric  methods,  the
impacts  of  these  predictors  on  EPDO  are  found  to  be  not
crucial for the negative binomial model. Although the DIC of
semiparametric was highly lower for the semiparametric model
compared  with  the  Bayesian  Poisson  model,  this  value  is
significantly lowered by implementing the negative binomial
model,  11,513  and  52,127  for  the  negative  binomial  and
semiparametric  model,  respectively.

Table 3. Modeling results based on Bayesian hierarchical, Poisson distribution.

Mean Std. Dev. 2.50% 97.50%
Mean of random intercept (Barrier type mean) 1.92 0.539 1.09 2.75
Random intercept variance 9.59 9.618 0.23 35.35
Alpha [1]: box beam 1.55 0.101 1.36 1.75
Alpha [2]: concrete 2.06 0.113 1.85 2.29
Alpha [3]: W-beam 2.14 0.105 1.95 2.35
Restrain conditions 1.09 0.020 1.05 1.13
Length of barrier, continuous 0.0003 0.00006 0.0002 0.005
Highway classification -0.32 0.020 -0.36 -0.28
Barrier height × shoulder width 0.57 0.057 0.46 0.68
Gender -0.26 0.020 -0.30 -0.22
Speed involved 0.13 0.019 0.09 0.17
Weather condition -0.63 0.020 -0.67 -0.60
Barrier height 0.32 0.036 0.25 0.39
Shoulder width -1.70 0.146 -1.97 -1.42
Lighting condition -0.31 0.019 -0.35 -0.28
AADT, continuous 0.0001 0.00004 0.00001 0.005
Deviance 54826.7 5.504 54820.1 54856.6
DIC = 54841.9
pD = 15.1

Table 4. Modeling results based on Bayesian hierarchical, Negative binomial distribution.

Mean Std. Dev. 2.50% 97.50%
Mean of random intercept (Barrier type mean) 2.03 0.486 1.19 2.86
Random intercept variance 54.73 99.339 0.93 262.82
Alpha [1]: box beam 1.89 0.34 1.21 2.54
Alpha [2]: concrete 2.04 0.403 1.24 2.83
Alpha [3]: W-beam 2.16 0.373 1.41 2.88
Restrain conditions 1.54 0.133 1.29 1.81
Length of barrier 0.0004 0.00008 0.0002 0.007
Highway classification -0.23 0.083 -0.39 -0.07
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Mean Std. Dev. 2.50% 97.50%
Barrier height × shoulder width 0.09 0.233 -0.38 0.50
Gender -0.15 0.093 -0.34 0.03
Speed involvement 0.14 0.084 -0.03 0.30
Weather condition -0.93 0.083 -1.10 -0.77
Barrier height 0.09 0.118 -0.13 0.33
Shoulder width -0.44 0.584 -1.50 0.72
Lighting condition -0.29 0.088 -0.46 -0.11
AADT, continuous 0.0002 0.00005 0.00002 0.006
Deviance 11513.0 5.792 11503.73 11526.13
DIC = 11529.7
pD = 16.7

In summary, it was found that being unrestrained, driving
in  an  interstate  system,  driving  in  clear  weather,  light
conditions,  and  driving  in  higher  traffic  all  increase  the
likelihood  of  EPDO  crashes.  The  interaction  for  specific
shoulder  width  and  barrier  heights  was  also  found  to  be  not
significant.

As  discussed,  not  accounting  for  overdispersion  would
result  in  an  inaccurate  estimation  of  the  models’  results
variability  and  underestimation  of  the  estimated  parameter
variance.  This  can be observed by comparing the two-model
standard  deviation.  For  instance,  all  negative  binomial
variables resulted in a higher standard deviation compared with
the Poisson model. Also, as can be seen from the two models,
NB model penalizes more (higher pD) due to increased model
complexity.

Finally, it should be noted that the criteria to keep variables
were their certainty in the semiparametric model. So, this way,
we  work  in  favor  of  the  semiparametric  technique.  For
instance,  while  there  are  lower  confidence  intervals  (CI)  for
gender  for  the  semiparametric  and  Bayesian  hierarchical
Poisson  model,  there  is  a  wide  confidence  interval  (CI),
including zero,  for the Bayesian Hierarchical model.  Despite
that,  the  negative  binomial  model  still  outperforms the  other
considered techniques.

4. DISCUSSION

In  the  generalized  linear  model,  it  is  assumed  a  linear
relationship between the log of the expected response and other
predictors. However, in crash data analysis, the assumption of
linearity  is  often  violated.  This  paper  used  a  Bayesian
semiparametric  model  in  the  context  of  a  Poisson  model  to
estimate  a  relationship  between  the  number  of  traffic  barrier
EPDO  and  various  explanatory  variables.  In  addition,  this
model  is  compared  with  two  Bayesian  hierarchical  models,
Poisson and negative binomial distributions.

One  fundamental  interest  of  applying  the  Bayesian
semiparametric  model  is  the  relaxation  of  parametric
assumptions  to  gain  modelling  flexibility  and  robustness
against  unnecessarily  misspecifications  assumptions.  The
nonparametric technique allows nonlinear relationships to be
accounted  for,  while  it  cannot  be  considered  in  a  classical
linear model. This method implements a partition of the sample
space, where the distribution of each partition is the Dirichlet
distribution with various hyper parameters.

The  question  might  arise  for  the  semiparametric  model:
how  good  is  this  model  for  accommodating  over  dispersed
data.  The  answer  to  this  question  varies  based  on  the
complexity  of  the  model,  the  number  of  included predictors,
and the structure of the model. That point is essential for traffic
safety studies as most crash count datasets are over-dispersed.
The DIC measures use expected out-of-sample predictive error
while penalizing the number of included predictors for a fair
comparison across various models.

Another challenge of the included counts crash dataset is
heterogeneity  resulting  from  the  dataset's  structure:
observations belonging to a specific traffic barrier type are not
independent. This is where hierarchical modelling plays a role
by  compensating  the  bias  by  considering  the  dependence
between various observations. Bayesian hierarchical modelling
was identified as closest model to the structure of the Bayesian
semiparametric method. In the Bayesian semiparametric model
accounting  for  hierarchy  could  be  achieved  by  setting  a
grouping as various barrier types, while in Bayesian hierarchy,
it could be specified by setting a different intercept for barrier
types.

DIC method was used as a sole model assessment method
due  to  the  limitation  of  other  measures  such  as  the  Bayes
factor.  DIC  was  substantially  reduced  from  BHP  to
semiparametric  and  from  semiparametric  to  HNB.  Although
the obtained results of the three models are in line, in terms of
signs, for all methods, the significance of the predictors varies,
especially  across  the  Hierarchical  model  with  negative
binomial  distribution  and  the  two  other  models.

The  better  fit  of  the  HNB  was  despite  the  fact  that  we
based  the  inclusion  of  variables  on  the  semiparametric
technique. For instance, many variables such as gender, which
were significant in the semiparametric method, were not in the
HNB model. Another essential comparison being made across
the models was estimated parameters' variance. As discussed,
not  accounting  for  overdispersion  results  in  underestimating
the variances of the parameter and consequently biased point
estimates. This could be observed by comparing the two-model
standard deviation.

It should be highlighted that the results are specific to the
dataset  used  in  this  study,  and  more  studies  are  needed  to
confirm  the  results.  More  flexibility  could  be  given  to  the
semiparametric technique by setting other based distributions
in future studies so the results could be more comparable with

(Table 4) contd.....
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the negative binomial distribution.

CONCLUSION

As  this  study  is  a  starting  point  for  conducting  a  cost-
benefit  analysis  of  barriers  in  the  state,  and  the  variables  of
barrier heights and shoulder-width were found to be of crucial
importance,  other  ranges  of  these  two  predictors  need  to  be
considered  for  future  studies.  This  is  because  the  interaction
between these two predictors was found to be not crucial for a
finalist model, or HNB. This study can serve as a guideline for
future studies for implementing suitable distribution.

LIST OF ABBREVIATIONS

DIC = Deviance Information Criterion

NB = Negative Binomial

ROTR = Run-off-the-road

EPDO = Equivalent Property Damage Only

HNB = Hierarchical Negative Binomial

DP = Dirichlet Process

CI = Confidence Intervals

CONSENT FOR PUBLICATION

Not applicable.

FUNDING

None.

CONFLICT OF INTEREST

Mahdi Rezapour is the Associate Editorial Board Member
of The Open Transportation Journal.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

K. H. Janstrup, Road Safety Annual Report 2017., 2017.[1]
R. Subramanian, "Motor vehicle traffic crashes as a leading cause of[2]
death in the United States, 2002", Young, vol. 1, p. 3, 2005.
A.  Weber,  and D.C.  Murray,  Evaluating the  Impact  of  Commercial[3]
Motor  Vehicle  Enforcement  Disparities  on  Carrier  Safety
Performance.,  American  Transportation  Research  Institute,  2014.
Transportation Officials,  Task Force for  Roadside Safety,  Roadside[4]
Design Guide., AASHTO, 2011.
M.  Rezapour,  S.S.  Wulff,  and  K.  Ksaibati,  "Examination  of  the[5]
severity of two-lane highway traffic barrier crashes using the mixed
logit model", J. Safety Res., vol. 70, pp. 223-232, 2019.
[http://dx.doi.org/10.1016/j.jsr.2019.07.010] [PMID: 31847999]
E.T. Donnell, and J.M. Mason Jr, "Predicting the frequency of median[6]
barrier  crashes  on  Pennsylvania  interstate  highways",  Accid.  Anal.
Prev., vol. 38, no. 3, pp. 590-599, 2006.
[http://dx.doi.org/10.1016/j.aap.2005.12.011] [PMID: 16442487]
A.  Jara,  T.  Hanson,  F.  Quintana,  P.  Müller,  and  G.  Rosner,[7]
"DPpackage:  Bayesian  semi-and  nonparametric  modeling  in  R",  J.
Stat. Softw., vol. 40, no. 5, pp. 1-30, 2011.
[http://dx.doi.org/10.18637/jss.v040.i05] [PMID: 21796263]
A. Jara, "Applied Bayesian non-and semi-parametric inference using[8]
DPpackage,",  SpherWave:  An  R  Package  for  Analyzing  Scattered
Spherical Data by Spherical Wavelets, vol. 7, p. 17, 2007.
C. Carota, and G. Parmigiani, "Semiparametric regression for count[9]
data", Biometrika, vol. 89, no. 2, pp. 265-281, 2002.
[http://dx.doi.org/10.1093/biomet/89.2.265]

K. Das, R. Li, S. Sengupta, and R. Wu, "A Bayesian semiparametric[10]
model for bivariate sparse longitudinal data", Stat. Med., vol. 32, no.
22, pp. 3899-3910, 2013.
[http://dx.doi.org/10.1002/sim.5790] [PMID: 23553747]
J. Pan, and G. Mackenzie, "On modelling mean-covariance structures[11]
in longitudinal studies", Biometrika, vol. 90, no. 1, pp. 239-244, 2003.
[http://dx.doi.org/10.1093/biomet/90.1.239]
D.B. Dunson, "Bayesian semiparametric isotonic regression for count[12]
data", J. Am. Stat. Assoc., vol. 100, no. 470, pp. 618-627, 2005.
[http://dx.doi.org/10.1198/016214504000001457]
T.S.  Shively,  K.  Kockelman,  and  P.  Damien,  "A  Bayesian  semi-[13]
parametric model to estimate relationships between crash counts and
roadway characteristics", Transp. Res., Part B: Methodol., vol. 44, no.
5, pp. 699-715, 2010.
[http://dx.doi.org/10.1016/j.trb.2009.12.019]
L. Fahrmeir, and L. Osuna, Structured count data regression, 2003.[14]
K. Xie, X. Wang, H. Huang, and X. Chen, "Corridor-level signalized[15]
intersection  safety  analysis  in  Shanghai,  China  using  Bayesian
hierarchical models", Accid. Anal. Prev., vol. 50, pp. 25-33, 2013.
[http://dx.doi.org/10.1016/j.aap.2012.10.003] [PMID: 23149321]
J.  Wang,  and  H.  Huang,  "Road  network  safety  evaluation  using[16]
Bayesian  hierarchical  joint  model",  Accid.  Anal.  Prev.,  vol.  90,  pp.
152-158, 2016.
[http://dx.doi.org/10.1016/j.aap.2016.02.018] [PMID: 26945109]
M. Rezapour, and K. Ksaibati, "Application of Bayesian hierarchical[17]
finite mixture model to account for severe heterogeneous crash data",
Signals, vol. 2, no. 1, pp. 41-52, 2021.
[http://dx.doi.org/10.3390/signals2010004]
M. Rezapour, and K. Ksaibati, "Comprehensive Evaluation of a Sparse[18]
Dataset,  Assessment  and Selection of  Competing Models",  Signals,
vol. 1, no. 2, pp. 157-169, 2020.
[http://dx.doi.org/10.3390/signals1020009]
D.R. Cox, "Some remarks on overdispersion", Biometrika, vol. 70, no.[19]
1, pp. 269-274, 1983.
[http://dx.doi.org/10.1093/biomet/70.1.269]
M.  Poch,  and  F.  Mannering,  "Negative  binomial  analysis  of[20]
intersection-accident frequencies", J. Transp. Eng., vol. 122, no. 2, pp.
105-113, 1996.
[http://dx.doi.org/10.1061/(ASCE)0733-947X(1996)122:2(105)]
D.  Lord,  "Modeling  motor  vehicle  crashes  using  Poisson-gamma[21]
models: Examining the effects of low sample mean values and small
sample  size  on  the  estimation  of  the  fixed  dispersion  parameter",
Accid. Anal. Prev., vol. 38, no. 4, pp. 751-766, 2006.
[http://dx.doi.org/10.1016/j.aap.2006.02.001] [PMID: 16545328]
D. Lord, and P.Y.J. Park, "Investigating the effects of the fixed and[22]
varying dispersion parameters of Poisson-gamma models on empirical
Bayes estimates", Accid. Anal. Prev., vol. 40, no. 4, pp. 1441-1457,
2008.
[http://dx.doi.org/10.1016/j.aap.2008.03.014] [PMID: 18606278]
T.S.  Ferguson,  "A  Bayesian  analysis  of  some  nonparametric[23]
problems", Ann. Stat., vol. 1, no. 2, pp. 209-230, 1973.
[http://dx.doi.org/10.1214/aos/1176342360]
M.D.  Escobar,  and  M.  West,  "Bayesian  density  estimation  and[24]
inference using mixtures",  J. Am. Stat.  Assoc.,  vol.  90, no. 430, pp.
577-588, 1995.
[http://dx.doi.org/10.1080/01621459.1995.10476550]
A. Jara, T.E. Hanson, and E. Lesaffre, "Robustifying generalized linear[25]
mixed  models  using  a  new  class  of  mixtures  of  multivariate  Polya
trees", J. Comput. Graph. Stat., vol. 18, no. 4, pp. 838-860, 2009.
[http://dx.doi.org/10.1198/jcgs.2009.07062]
A.  Gelman,  and  X.  Meng,  Applied  Bayesian  Modeling  and  Causal[26]
Inference from Incomplete-Data Perspectives.,  John Wiley & Sons,
2004.
[http://dx.doi.org/10.1002/0470090456]
P. D. Hoff, A First Course in Bayesian Statistical Methods.Springer, .[27]
[http://dx.doi.org/10.1007/978-0-387-92407-6]
D.  J.  Spiegelhalter,  K.  R.  Abrams,  and  J.  P.  Myles,  Bayesian[28]
Approaches to Clinical Trials and Health-Care Evaluation.John Wiley
& Sons, .
[http://dx.doi.org/10.1002/0470092602]
M. Plummer, JAGS Version 3.3. 0 user manual., International Agency[29]
for Research on Cancer: Lyon, France, 2012.
M. Chen, and Q. Shao, "Monte Carlo estimation of Bayesian credible[30]
and HPD intervals", J. Comput. Graph. Stat., vol. 8, no. 1, pp. 69-92,
1999.

© 2022 Rezapour and Ksaibati

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is
available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

http://dx.doi.org/10.1016/j.jsr.2019.07.010
http://www.ncbi.nlm.nih.gov/pubmed/31847999
http://dx.doi.org/10.1016/j.aap.2005.12.011
http://www.ncbi.nlm.nih.gov/pubmed/16442487
http://dx.doi.org/10.18637/jss.v040.i05
http://www.ncbi.nlm.nih.gov/pubmed/21796263
http://dx.doi.org/10.1093/biomet/89.2.265
http://dx.doi.org/10.1002/sim.5790
http://www.ncbi.nlm.nih.gov/pubmed/23553747
http://dx.doi.org/10.1093/biomet/90.1.239
http://dx.doi.org/10.1198/016214504000001457
http://dx.doi.org/10.1016/j.trb.2009.12.019
http://dx.doi.org/10.1016/j.aap.2012.10.003
http://www.ncbi.nlm.nih.gov/pubmed/23149321
http://dx.doi.org/10.1016/j.aap.2016.02.018
http://www.ncbi.nlm.nih.gov/pubmed/26945109
http://dx.doi.org/10.3390/signals2010004
http://dx.doi.org/10.3390/signals1020009
http://dx.doi.org/10.1093/biomet/70.1.269
http://dx.doi.org/10.1061/(ASCE)0733-947X(1996)122:2(105)
http://dx.doi.org/10.1016/j.aap.2006.02.001
http://www.ncbi.nlm.nih.gov/pubmed/16545328
http://dx.doi.org/10.1016/j.aap.2008.03.014
http://www.ncbi.nlm.nih.gov/pubmed/18606278
http://dx.doi.org/10.1214/aos/1176342360
http://dx.doi.org/10.1080/01621459.1995.10476550
http://dx.doi.org/10.1198/jcgs.2009.07062
http://dx.doi.org/10.1002/0470090456
http://dx.doi.org/10.1007/978-0-387-92407-6
http://dx.doi.org/10.1002/0470092602
https://creativecommons.org/licenses/by/4.0/legalcode

	Application of Bayesian Semi-Parametric and Hierarchical Models for Analyzing Dispersed Traffic Barriers Crash Data 
	[Introduction:]
	Introduction:
	Methods:
	Results and Discussion:
	Conclusion:

	1. INTRODUCTION
	1.1. Semi-or Non-Parametric Methods
	1.2. Bayesian Hierarchical Model
	1.3. Research Question

	2. METHODOLOGY
	2.1. Bayesian Semiparametric Method
	2.2. Bayesian Hierarchical Modeling
	2.3. Data

	3. RESULTS
	3.1. Bayesian Semiparametric Method
	3.2. Bayesian Hierarchical Technique
	3.3. Bayesian Hierarchical Poisson Model
	3.4. Bayesian Hierarchical Negative Binomial Model

	4. DISCUSSION
	CONCLUSION
	LIST OF ABBREVIATIONS
	CONSENT FOR PUBLICATION
	FUNDING
	CONFLICT OF INTEREST
	ACKNOWLEDGEMENTS
	REFERENCES




