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Abstract:

Background:

The  safety  and  capacity  of  roadways  are  immensely  influenced  by  time  headways,  a  major  traffic  flow  characteristic.  Time  headways  are
frequently utilized in various aspects of traffic and transportation engineering studies, including capacity analyses, studies of safety, modelling of
lane-changing and car-following behaviour, and level of service assessment.

Time headway, measured in seconds, refers to the distance between two subsequent passing cars moving over a single spot on the road. This paper
reports  the  statistical  modelling  of  the  time  headway  distribution  of  a  mixed  traffic  flow  scenario  caused  by  BRT  via  statistical  headway
distribution models. The paper posits that the introduction of BRT dedicated lane and its adopted design configuration induces anomalous traffic
flows on its adjoining lanes with attendant time headway differentials, irrespective of the type of adopted design configuration for the corridor. The
objectives  of  this  study  were  to  fit  the  BRT-induced  time  headway  distribution  to  probability  distribution  models  and  determine  the  most
appropriate distribution model that fits the data derived using the goodness of fit tests. Consequently, this contribution, therefore, fills the gap in
research with respect to determining the precise model that fits the time headway distribution of mixed traffic flow scenarios induced by BRT.

Methods:

The time headway distribution data collected at four designated road segments on a multilane provincial route R27 caused by BRT dedicated lane
in Cape Town, South Africa,  were fitted to five probability distribution models  viz,  Lognormal,  Inverse Gaussian,  Log-logistic,  Generalized
Extreme Value (GEV), and Burr using MATLAB software. The fitted headway data were with respect to the traffic flows on the adjoining lanes to
BRT or traffic flow ‘without BRT’. Precisely, the empirical data were collected over a three-month period using an Automatic Traffic Counter
(ATC). Using ModelRisk software, the goodness of fit of the probability models was assessed by the Akaike Information Criterion (AIC), the
Schwartz or Bayesian Information Criterion (SIC or BIC), the Hannan Quinn Information Criterion (HQIC), and the loglikelihood (LLH) model
performance criteria respectively. The distribution model with the lowest AIC criterion and largest loglikelihood (LLH) values describe the model
that best fits the headway data across the four sites.

Results:

Results showed that the models fitted the headway data well at each site by visual inspection of the attendant Probability Density Function (PDF)
and the Probability plots (P-P). However, the Burr distribution provided the overall best fit based on the AIC and LLH values at 95% confidence
and 0.05 significance levels across the four sites. At sites 02, 03, and 04, it ranked first with the lowest AIC values of 4025.99, 2595.56, 3815.36,
and corresponding largest LLH values of -2008.98, -1293.76, and -1903.66, respectively, while the lognormal distribution performed best at site
01, with AIC value of 4445.14 and LLH value of -2220.57, closely followed by the Burr distribution with AIC and LLH values of 4453.05 and
-2222.51, respectively. The P-values, which ranged between 0.65 and 0.80, showed the likelihood of the occurrence of the data sets under the null
hypothesis. Hence the null hypothesis was accepted.

Conclusion:

The study concluded that the introduction of BRT dedicated lanes affects the adjoining lanes’ mixed traffic time headways’ distribution, and the
headways are continuously distributed, hence fitting continuous probability distributions.
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1. INTRODUCTION

According to the Highway Capacity Manual (HCM) 2010,
time  headway  refers  to  “the  time  between  two  successive
vehicles as they pass a point on a lane or roadway, measured in
seconds  from  the  same  point  on  each  vehicle”  [1].  Time
headway in traffic flow modelling and planning is considered a
relevant control parameter that affects the behaviour of drivers,
and  it  particularly  plays  a  major  role  in  the  estimation  of
roadway  capacity  [2].  Time  headway  is  a  microscopic
characteristic of flow that has also found useful applications in
the estimation of Passenger Car Units (PCUs), Level of Service
(LOS) evaluation,  analysis of safety,  gap acceptance studies,
and delay studies [3, 4] It is a fundamental characteristic of the
quality and quantity of traffic flow [5], that describes the order
in  which  a  leading  car  and  the  one  that  follows  it  arrive  at
selected points on a roadway [6]. Its analysis has been found to
be one of the most  important  methods in traffic engineering,
employed to understand the position of one vehicle relative to
the other in a mixed traffic flow [6]. In terms of quantitative
applications, it is inversely proportional to capacity and traffic
volume.  Furthermore,  it  has  significant  usage  in  traffic
simulations,  merge-diverge  decisions  of  drivers  at
intersections,  and  traffic  safety  analysis  [7].  The  concept  of
traffic  flow  is  particularly  an  overly  complex  and  tricky
phenomenon that is difficult to understand. However, headway
analysis through stochastic models has been found to be able to
explain  it  to  some  extent.  It  is,  therefore,  not  a  wonder  that
several  attempts have been made to develop models that  can
explain  the  headway  distribution  under  different  prevailing
conditions.  The  modelling  of  time  headways  involves  the
description of how the traffic stream behaves by paying close
attention to the characteristics of the individual vehicles. There
are  several  applications  of  time  headway  models,  with
attendant merits and demerits. Time headway models are often
used to study vehicle spacing and analyse the arrival rates of
vehicles  at  a  given  point  or  location  of  an  accident  during
accident  studies.  By  carefully  modelling  and  analysing  the
distribution of vehicle headways, traffic engineers can increase
route  capacity  and  decrease  vehicle  delay  [8].  In  terms  of
safety, the decision drivers make to either merge, pass, weave,
or just follow a leading vehicle is a function of their perception
of a safe time headway between them and the other vehicles in
their  vicinity.  Time  headway  modelling  is  also  employed  to
investigate the pattern with which traffic fluctuates within an
interval of time and the possibility of congestion. Additionally,
headway distributions are required for digital simulations that
use  driving  simulators  to  simulate  multilane  traffic  [8].
Additionally, headway analysis makes it possible to learn more
about  the  causes  of  collisions  and  strategies  for  enhancing
traffic  safety.  In  capacity  modeling,  the  safety  headway
requirement  is  often  ignored  during  model  calibration  and
parameter estimates. This could help to partially explain why
some issues frequently arise on roads carrying less traffic than
their theoretical capacity [9].

Mixed  traffic  flows  on  roadways  are  characterized  by
incessant  traffic  manoeuvres,  speed  changes,  and  weak  lane
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discipline, amongst other anomalous behaviours in the stream.
The  presence  of  vehicles  of  different  sizes,  varied
manoeuvrability,  and  dynamic  features  often  lead  to
differential  in-vehicle  time  headways  varying  from  zero  to
several  seconds  [6].  These  characteristics  result  in
transportation burdens,  such as  delay,  platooning,  and traffic
jams  as  soon  as  the  jam  density  is  reached  and  all  vehicles
come to a stop. Mixed traffic flows on the adjoining lanes to a
BRT dedicated lane are not an exception to these problems, but
there  has  been  limited  literature  that  has  investigated  this
scenario,  despite  several  previous  studies  on  heterogeneous
traffic  time  headways.  Given  this  situation,  this  study,
therefore, analyzes the headway data collected at four different
road segments in Cape Town, South Africa, and explores the
possibility  of  fitting  the  headway  data  to  probability
distribution models, as well as determining the distribution that
best fits the headway distribution caused by BRT. This further
helps to understand the attendant anomalous changes in traffic
characteristics,  such  as  time  headways,  due  to  physical
roadway  constraints,  such  as  BRT  dedicated  lanes,  through
stochastic models.

2. LITERATURE REVIEW

2.1.  Time  Headway  Distribution  on  Roadways  and
Freeways

Time  headway  distributions  on  roadways  and  freeways
have been previously studied and documented in the literature.
In 1993, Mei and Bullen investigated the number of headways
measured  on  two  southbound  lanes  of  a  four-lane  motorway
during the morning rush hour through probability distribution
models. The lognormal distribution was the optimum model for
the time headways in heavy traffic flow at both specified lanes,
which was found to be with a 0.3 or 0.4 second shifting. In a
study  by  [10]  on  interstate  highways  in  Illinois,  the  United
States,  headways  were  recorded at  traffic  rates  ranging  from
140  to  1704  vehicles  per  hour  per  lane.  The  study
recommended generating the time headway distribution for any
traffic  volume  for  both  the  right  and  left  lanes  using  the
lognormal  model  with a  shift  of  0.36 seconds.  Thamizh [11]
looked at the time headway data gathered from a divided urban
arterial  in  Chennai  City,  India,  with  four  lanes.  It  was
discovered that the negative exponential statistical distribution
could  accurately  simulate  headways  for  all  traffic  flows  and
lane  configurations.  Bham  and  Ancha  [12]  also  studied  the
temporal car-following headways for several sorts of highway
sections in a steady state.  A standard highway segment,  lane
shift, ramp merge, along with ramp weave part are all present
at  the  data  sites.  In  comparison  to  the  shifted  gamma
distribution, the lognormal distribution with shifts was found to
offer a superior fit for each of the locations cited. In Riyadh,
Saudi  Arabia,  Al-Ghamdi  [12]  examined  time  headways
observed on urban highways. Three categories of traffic flow
were used to categorize the observed vehicle flow range: low
(400 vehicles per hr), medium (400–1200 vehicles per hr), and
high  (>1200  vehicles  per  hr).  His  analysis  found  Erlang,
shifted-exponential, and negative exponential distributions to
be the best models.

He also noted that low-traffic situations had been the focus
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of the majority of  the headway distribution studies that  have
been  conducted.  At  large  levels  of  traffic  flow,  the  headway
distribution  modeling  is  nevertheless  still  hazy.  Vehicle
headways  gathered  from  Finnish  rural  roadways  were
thoroughly  analyzed  by  [13].  He  concluded  that  low  to
moderate traffic levels with a low possibility of having short
headways  can  be  handled  by  the  gamma  distribution.
Additionally, he asserted that the lognormal distribution could
serve  as  a  model  for  the  follower  headway distribution  even
though  it  is  neither  straightforward  nor  sufficiently  realistic
[13]. Zwahlen et al. [8], in 2007, studied the portability of the
Ohio  traffic  load  and  lane  traffic  cumulative  headway
distributions. The study's findings demonstrated that for similar
hourly  traffic  numbers,  and  for  the  most  part,  the  headway
distributions  are  the  same  for  each  lane.  To  examine  the
influence of specific factors on the time headway distribution,
[15]  used  a  synthetic  Erlang  distribution  model  to  analyze
headway data  from multiple  Japan-based sites.  Besides,  they
looked for a law that relates to the model parameters. Results
showed  that  each  lane  had  a  distinct  background  that  could
influence  the  distribution  of  time  headways.  Vehicle  time
headway distributions at varying flow rates on two- and four-
lane  roadways  in  India  were  examined  by  the  researchers
mentioned  in  the  reference  [6]  using  lognormal  and  log-
Pearson statistical modelling methods. They also accessed the
changes in the time headways of vehicles for several two-lane
and four-lane routes throughout the morning and evening hours
with  mixed  traffic.  Their  results  not  only  captured  the
differences  in  headway  distribution  but  also  identified  the
headways  of  some  types  of  vehicles,  including  the  way
vehicles maintain headways when headlights are turned on. In
another  study  conducted  in  India  by  [14],  the  distribution  of
speed and time headway of vehicles in mixed vehicular traffic
on four two-lane bidirectional roadways was examined using
leader-follower  vehicle  pairs.  Results  showed  that  the  speed
and time headway distributions varied significantly and were
found to have useful applications in capacity estimation, Level
of  Service  (LOS)  analysis,  and  the  development  of  micro-
simulation  models.  Time  headway  distributions  were  also
modelled  using  three  different  probabilistic  models  (single,
combined and mixed) by [15] in France. Results showed that
the  mixed  models  provided  the  best  fit  among  several  time
headway  samples.  Using  a  traffic  detector  incorporated  with
laser  sensors  for  sorting  and  analysis,  the  theoretical  traffic
flow  models  to  analyse  time  headway  distributions  were
developed, as mentioned in the reference [16]. The results gave
a  better  understanding  of  headway  in  signalized  arterials.  In
another  study,  [19]  examined  the  impact  of  lane  position  on
time headway in Isfahan, Iran, to evaluate driving behaviour at
various  highway  lanes  using  headway  distribution  analysis.
The results showed that the appropriate model for passing lanes
differs  from  the  one  for  middle  lanes  due  to  the  different
behavioural operations of drivers. In a study conducted by [17],
time  headway  considering  lateral  distance  was  studied  on  a
non-lane-based traffic flow using a novel approach, where time
headways were divided into 5 intervals in form of a measuring
criterion to evaluate time headway values and implications as
“Unsafe  (0-0.7  sec),  non-lane-based  car-following  (0.9  sec),
lane-based  car-following  (1.0  sec),  overtaking  time headway
(1.3 sec), and free driving (larger than 2.5 sec)” [17]. Results

indicated  that  “to  differentiate  between  following  and  free-
wheeling driving behavior, a reasonable criterion to use is the
time  headway  of  the  overtaking  operation”.  Another  closely
related study conducted in  China by [18]  investigated traffic
congestion  and  lane-changing  patterns  involving  interactions
between BRT and general traffic flow at a typical bottleneck
along  a  BRT  corridor.  Results  revealed  abnormal  lane
violations resulting in a 16% reduction in the saturation rate of
general traffic and 17% in bus travel time. Most of the studies
discussed  so  far  which  have  examined  the  time  headway
distributions  of  low,  medium,  and heavy mixed traffic  flows
were  performed  based  on  headway  data  of  roadways  or
corridors  without  BRT  dedicated  lanes.  The  purpose  of  this
paper is to report on the findings from a study that looked at
how the  presence  of  a  BRT dedicated  lane  affected  the  time
headway distribution of the high volume of mixed traffic that
resulted  on  the  adjoining  lanes.  The  main  thrust  is  to  fit  the
headway data to probability distribution models and determine
the most appropriate headway distribution model that best fits
the data and the condition.

2.2.  Hypothesis  Testing  and  Estimation  of  Model
Parameters

The  technique  known  as  “goodness  of  fit”  is  used  to
confirm  and  determine  whether  a  probability  distribution  is
suitable  for  simulating  a  specific  phenomenon.  The  Akaike
Information  Criterion  (AIC),  the  Schwartz  or  Bayesian
Information  Criterion  (SIC  or  BIC),  and  the  Hannan  Quinn
Information Criterion (HQIC) were the methodologies used in
this  investigation.  Although  the  Chi-Squared  (C-S),
Kolmogorov-Smirnoff  (K-S),  and  Anderson-Darling  (A-D)
goodness-of-fit statistics are still  widely used today, they are
not theoretically the best ways to compare distributions fit data.
They cannot  include  censored,  truncated,  or  binned data  and
are also restricted to accurate observations. The AIC, SIC, or
BIC  and  HQIC,  however,  are  statistical  measures  of  fit
generally known as information criteria.  They are defined as
follows:

A.  AIC  (Akaike  Information  Criterion):  The  Akaike
Information  Criterion  is  defined  by  the  following  model
equation:

(1)

B.  SIC  (Schwarz  Information  Criterion,  aka  Bayesian
Information  Criterion  BIC):  The  Schwarz  Information
Criterion,  aka  Bayesian  Information  Criterion,  is  defined  as
follows:

(2)

C.  HQIC  (Hannan-Quinn  Information  Criterion):  The
Hannan-Quinn  Information  Criterion  is  defined  as  follows:

(3)

The  objective  is  to  identify  the  model  with  the  lowest
information criterion value. Each formula has the -2ln [Lmax]
term, which is an estimation of the model fit's deviation. Each
formula's  first  component  contains  coefficients  for  k  that

AICc = (
2n

n−k−1
)k− 2ln[Lmax ] 

SIC = ln[n]k − 2ln[Lmax ]

 

HQIC = 2ln [ln[n]]k − 2ln[Lmax ]
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indicate  the  severity  of  the  penalty  for  the  number  of  model
parameters.  Regarding  punishing  the  loss  of  a  degree  of
freedom, SIC [19] and HQIC [20] are stricter than AIC [21].
These  three  criteria  are  used  to  score  each  fitted  model,
whether it fits a copula, a time series model, or a distribution.
Therefore, based on Maximum Likelihood Estimation (MLE),
the model criterion with the lowest value of AIC, SIC, or BIC
and HQIC provides the best fit. Amongst the three information
criteria, the AIC ranking determines the best-fitted distribution.

2.3. Data Survey

The  data  were  collected  in  Cape  Town,  South  Africa.
Traffic Characteristics data of volume and speed were surveyed
at  four  designated sites  01 – 04 along the BRT route R27 in
Cape  Town,  South  Africa,  for  a  three-month  period.  The
Automatic Traffic  Counter  (ATC),  installed at  the four sites,
was  used  to  collect  the  data  24  hours  a  day  for  the  entire
period. Each location utilized two ATC loggers, one of which
recorded  BRT  traffic  flow  data  on  the  BRT  dedicated  lane,
while the other recorded data on the adjoining lanes. Fig. (1)
shows  the  general  layout  of  the  impact  study  location.  The
multilane  provincial  trunk  route  BRT  corridor,  R27  in  Cape
Town, South Africa, was selected for the field data survey. The
sites,  which  are  located  along  the  trunk  route,  were  selected
after  satisfying  the  following  location  criteria:  (1)  the
geometric  feature  of  roadway  under  investigation  had  the
presence  of  a  BRT  dedicated  lane  with  median  design
configuration and two adjoining lanes lying in parallel to it; (2)
the roadway segments had relatively flat topographical terrain
void  of  steep  vertical  slopes  that  could  affect  the  free  flow
speed  data,  as  well  as  pavement  surfaces  free  from  defects,
such  as  rutting  and  potholes  etc.;  (3)  the  roadway  segments
were  free  from  the  influence  of  road  intersections,  on-street
parking,  broken  down  vehicles,  traffic  police  check  points,
roundabouts  and  fuel  filling  stations  along  the  route,  which
could  also  affect  the  free  flow  of  traffic;  (4)  the  segment
lengths  were  long  enough  to  allow  for  the  setting  up  of  the
survey equipment at spots where there was sufficient free flow
speed  and  the  segment  length  was  greater  than  the  stopping
sight  distance  (SSD)  to  reduce  or  eliminate  the  effect  of
intersections. Each pneumatic tube was placed and connected
to the ATC loggers in accordance with the specifications and
configurations  and  nailed  in  both  lanes  1m  apart  at  the  four
sites, as shown in Fig. (2). The loggers identified three vehicle
categories or classes viz: passenger car (PC), medium vehicles
(MV),  and  heavy  vehicle  (HV).  A  total  of  about  4560
headways were extracted for all  the sites from the individual
vehicle  characteristics  data  and  sorted  on  a  Microsoft  Excel
worksheet.  Table  1  presents  the  descriptive  statistical
characteristics of the headways collected from each of the four
sites  surveyed.  Between  sites  01  and  03,  the  mean  headway
decreased,  while  site  04  experienced  a  significant  increase.
This is due to the low traffic volumes observed at site 04. The
explanation  for  this  is  that  the  road  segment  mainly  carries
traffic  volumes  from  this  work.  The  standard  deviation
exhibited  similar  behaviour.  The  trend  in  the  coefficient  of
variation  indicates  that  there  is  a  cluster  of  headways  on the
roadway segments,  particularly  at  sections  near  intersections
where long queues are formed at peak traffic quickly because
the introduction of BRT dedicated lanes has eliminated one of
the  three  previously  available  lanes,  causing  long  queues  to

build  up  quickly.  The  time  headway  variable's  positive
skewness and kurtosis all indicate that most of the distribution's
headways are to the left of the mean value, which suggests that
the  road  segment  may  have  smaller  headways  or  isolated
clusters.

Fig. (1). Schematic layout of R27 impact study site.
Where  L  =  Length  of  roadway segment,  and  SSD =  Stopping  Sight
Distance

Fig. (2). Typical study sites with installed pneumatic tubes.

3. MATERIALS AND METHODS

To analyze the observed time headway distribution of the
mixed adjoining lanes traffic, the primary descriptive statistics
of  the  data  were  determined  first  for  each  site,  as  shown  in
Table  2.  Statistical  models  should  be  applied  to  fit  time
headway  data,  with  the  view  of  identifying  or  selecting  a
suitable model for time headway distribution. In this study, the
off-peak time headway data of the mixed traffic flows on the
adjoining  lanes  to  BRT  dedicated  lanes,  under  steady  flow
conditions, were fitted to five probability distribution models
using MATLAB software and were rated in the order in which
they best fit the data. The fitted probability distribution models
were  the  Lognormal,  Log  Logistic,  Inverse  Gaussian,
Generalized  Extreme  Value  (GEV),  and  Burr.  ModelRisk,  a
Monte Carlo Simulation computer software was employed to
perform the goodness of fit  tests,  targeted at determining the
best  and  most  appropriate  distribution  that  fits  the  time
headway  data  induced  by  BRT.  The  models  are  briefly
discussed  in  the  following  section:

 

 

             ATC 1         

                                    L > SSD 

Lane 1          1m  

Lane 2        

          

L > SSD 

               ATC 2 

                           

Lane 3 BRT DEDICATED LANE  1m              

(a) SITE 01 (b)  SITE 02 

(c)  SITE 03 (d) SITE 04 
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Table 1. Summary of descriptive statistical characteristics of the time headways.

Descriptive Statistics of Headways SITE 01 SITE 02 SITE 03 SITE 04
Mean 3,67 3,42 1,98 6,49

Standard Error 0,14 0,21 0,09 0,34
Median 2,1 1,5 1,3 2,1
Mode 1 1 1 1

Standard Deviation 4,55 6,50 3,67 11,05
Sample Variance 20,69 42,22 13,48 122,19

Kurtosis 13,00 23,09 86,68 7,53
Skewness 3,21 4,63 8,30 2,82

Coefficient of Variance 1,23 1,90 1,86 1,70
Range 37 50,4 60,1 58,7

Minimum 0 0 0 0
Maximum 37 50,4 60,1 58,7

Sum 3711 3382,7 3370,4 6797,1
Sample Size 1010 988 1705 1047

Table 2. Performance of the probability models.

SITES Rank Probability
Model SIC AIC HQIC LLH P Value Sig.

Level
Hypo.
Test

Best
Fit

SITE 01

1ST Lognormal 4454.97 4445.14 4448.87 -2220.57 0.6939
0.05
0.05
0.05
0.05
0.05

Accept
Accept
Accept
Accept
Accept

Log
normal

2ND InvGauss 4463.79 4453.97 4457.69 -2224.98 0.6553
3RD GEV 4465.68 4450.95 4456.53 -2222.46 0.7247
4TH Loglogistic 4468.80 4458.97 4462.70 -2227.48 0.7202
5TH Burr 4472.68 4453.05 4460.48 -2222.51 0.7248

SITE 02

2ND GEV 4042.28 4027.29 4032.96 -2010.64 0.7832
0.05
0.05
0.05
0.05
0.05

Accept
Accept
Accept
Accept
Accept

Burr
1ST Burr 4045.97 4025.99 4033.52 -2008.98 0.7872
3RD Loglogistic 4086.84 4076.84 4080.62 -2036.42 0.7962
4TH Lognormal 4150.91 4140.91 4144.69 -2068.45 0.7461
5TH InvGauss 4162.53 4152.53 4156.30 -2074.26 0.7055

SITE 03

1ST Burr 2614.86 2595.56 2602.89 -1293.76 0.7642
0.05
0.05
0.05
0.05
0.05

Accept
Accept
Accept
Accept
Accept

Burr
2ND GEV 2631.74 2617.25 2622.76 -1305.61 0.7578
3RD Loglogistic 2654.73 2645.07 2648.75 -1320.53 0.7667
4TH Lognormal 2751.19 2741.53 2745.20 -1368.76 0.7128
5TH InvGauss 2808.83 2799.17 2802.85 -1397.58 0.6621

SITE 04

2ND GEV 3834.77 3820.01 3825.60 -1906.99 0.7854
0.05
0.05
0.05
0.05
0.05

Accept
Accept
Accept
Accept
Accept

Burr
1ST Burr 3835.04 3815.36 3822.81 -1903.66 0.7919
3RD Loglogistic 3866.87 3857.03 3860.76 -1926.51 0.8036
4TH Lognormal 3959.28 3949.43 3953.16 -1972.71 0.7451
5TH InvGauss 3976.94 3967.09 3970.82 -1981.54 0.7028

3.1. Lognormal Distribution

The well-known distribution model known as Lognormal
is commonly employed in numerous research about headways.
Additionally,  modelling  headways  in  instances  where  an
automobile is followed is suggested by (Greenberg 1966). The
mathematical expression for the lognormal distribution is:

(4)

where: τ denotes the shift's value in seconds; µ and σ are

the  “location”  and  “scale”  variables  of  the  lognormal
distribution, respectively. The following can be deduced from
the observed data:

(5)

(6)

(7)
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3.2. Log Logistic Distribution

The  log-logistic  distribution  is  non-negative  random
variable probability distribution that is continuous and whose
logarithm has  a  logistic  distribution.  Although it  has  heavier
tails, it has a comparable shape to the log-normal distribution.
Its cumulative distribution function can be expressed in closed
form,  unlike  the  log-normal  distribution.  The  probability
density function of a log-logistic distribution can be expressed
as:

Probability Density Function:

(8)

and the Cumulative Distribution Function:

(9)

Where x > 0, α > 0, β > 0

3.3. Inverse Gaussian Distribution

The inverse Gaussian distribution is a family of continuous
probability distributions with two parameters that has support
on (0, ∞). It shares numerous characteristics with a Gaussian
distribution.  While  the  Gaussian  represents  a  Brownian
motion's level at a defined time, the inverse Gaussian defines
the distribution of the time it takes for a Brownian motion with
positive drift to achieve a fixed positive level. The probability
density function of the Inverse Gaussian Distribution is given
by:

(10)

3.4. Generalized Extreme Value Distribution (GEV)

A family of continuous probability distributions known as
the  Generalized Extreme Value (GEV) was created from the
extreme  value  theory.  It  serves  as  a  limit  distribution  of
correctly  normalized  maxima  of  a  series  of  independent
random variables  with  similar  distributions.  As  a  result,  it  is
utilized as an approximation to describe the maxima of lengthy
(finite) sequences of random variables. The distribution has a
continuous  scale  parameter  (k  >  0)  and  a  continuous  shape
parameter (k > 0). The PDF and CDF for this distribution are
described as follows:

(11)

Cumulative Distribution Function:

(12)

3.5. Burr Distribution

The Burr Distribution, also known as the generalized log-
logistic distribution, is a continuous probability distribution for
a  non-negative  random  variable.  To  simulate  household
income, it is frequently utilized. Continuous shape parameters
(k  >  0;  α  >  0),  continuous  scale  parameters  (β  >  0),  and
continuous  location  parameters  (γ  >  0)  are  present,  and  the
PDF and CDF are given by:

Probability Density Function (PDF):

(13)

Cumulative Distribution Function (CDF):

(14)

To  decide  which  of  the  distributions  is  the  most
appropriate model for headway data on each road segment, the
five  probability  distribution  models  were  subjected  to
goodness-of-fit  tests  earlier  defined,  also  referred  to  as
hypothesis testing. The following procedure was employed to
select the best headway distribution model:

3.5.1. Step 1

The  models  were  tested  using  the  three  goodness  of  fit
criteria  viz:  AIC,  SIC  and  HQIC,  through  the  ModelRisk
software.

3.5.2. Step 2

The generated AIC, SIC and HQIC goodness of fit values
were observed on the software interface, and the models with
the  lowest  AIC  and  largest  LLH  values  for  each  site  were
located, which determined the best-fitted distribution.

3.5.3. Step 3

The  generated  model  parameters  viz  shape,  scale,  and
location were applied to determine the P-value. The higher the
P-value and the more it exceeded 0.05 in all three tests at a 5
percent level of significance and 95% level of confidence, the
more compatible the model.

                                 

        

  

     

 

                     

                      

 

           

 
             



Modelling-mixed Traffic Time Headway Distribution The Open Transportation Journal, 2023, Volume 17   7

Fig. (3). Probability density function and P-P plots for site 01.

4. RESULTS AND DISCUSSION

The  study  is  based  on  the  following  hypotheses:  (1)  the
compatibility of observed time headway distribution with the
fitted probability distribution model is rejected if (p-value < α)
or accepted (p-value > α), where α = 0.05 (2) the distribution
which gives the smallest AIC, SIC and HQIC values, as well as
the  largest  log-likelihood  value  is  considered  the  best-fitted
model [22, 23]. The information criterion that determines the
overall  best-performing  distribution  is  the  AIC.  The  five
probability distributions earlier described were used to fit the
time  headway  data  surveyed  from each  site.  The  probability
density function (PDF) or  f(x)  and p-p plots  for  each site,  as
shown in Fig. (3 to 6), indicate how well each distribution fits.
All distributions fitted the headway data by visual inspection.

However,  from  the  information  criteria  measures  of  the
goodness of  fit  on the distributions as  shown in Table 2,  the
Burr distribution provided the best fit with respect to the values
of  the  Akaike  Information  Criterion  (AIC),  the  Schwartz  or
Bayesian Information Criterion (SIC or BIC), and the Hannan
Quinn Information Criterion (HQIC) at  sites 02 – 04 at  95%
level of confidence, and 0.05 level of significance, while the
Lognormal distribution provided the best fit at site 01. Based

on  the  postulated  hypothesis,  which  states  that  the
compatibility of observed time headway distribution with fitted
probability  distribution  model  is  rejected  if  (p-value  <  α)  or
accepted (p-value  > α),  the fitted distributions were tested at
5% significance level (α = 0.05). Among the distribution with
the lowest AIC value, and the largest LLH value to be selected
as  the  distribution  that  provides  the  best  fit,  the  Burr
distribution emerged as the best-fitted and performed model,
with  the  largest  log-likelihood  values  of  -2008,  -1293.76,
-1903.66,  and  lowest  AIC  values  of  4025.99,  2595.56,  and
3815.36, at sites 02, 03, and 04 respectively. This was followed
by the lognormal distribution, which performed best at site 01
only, with the largest loglikelihood value of -2220.57 and the
lowest  AIC  value  of  4445.14.  The  P-values  ranged  between
0.65  and  0.80,  and  were  greater  than  0.05;  hence  they  were
acceptable based on the null hypothesis.

4.1. Parameters of the Probability Distribution

The  distributions  fitted  to  the  time  headways  revealed
varied  estimated  parameters,  as  shown  in  Table  3.  Amongst
these distributions, only the Lognormal, Inverse Gaussian, and
Loglogistic have two parameters (shape and scale).

 

(a) Probability Density Plot for Site 01 

 

(b) P-P Plot for Site 01 
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Fig. (4). Probability density function and P-P plots for site 02.

Fig. (5). Probability density function and P-P plots for site 03.

 

(a) Probability Density Plot for Site 02 

 

(b) P-P Plot for Site 02 

 

(a) Probability Density Plot for Site 03 

 

(b) P-P Plot for Site 03 
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Table 3. Parameters of the probability distributions.

Location Probability Distribution Shape Parameter Scale Parameter Location Parameter

SITE 01

Lognormal 0.957653 - 0.824768 -
InvGauss 2.46774 - 3.68217 -

GEV 0.587635 - 1.33665 0.0506121
LogLogistic 0.544557 - 0.800605 -

Burr 2.06566 0.745544 1.7652 -

SITE 02

GEV 0.627169 - 0.887089 1.12756
Burr 2.80529 0.462925 0.937949 -

LogLogistic 0.517502 - 0.429871 -
Lognormal 0.962479 - 0.498461 -
InvGauss 1.75999 - 3.11653 -

SITE 03

Burr 3.14174 0.563195 0.951033 -
GEV 0.491284 - 0.631632 0.994844

LogLogistic 0.407593 - 0.25756 -
Lognormal 0.778561 - 0.302106 -
InvGauss 2.09987 - 2.13115 -

SITE 04

Burr 2.84908 0.489718 1.07838 -
GEV 0.581184 - 0.950245 1.24518

LogLogistic 0.492308 - 0.506001 -
Lognormal 0.943592 - 0.576195 -
InvGauss 1.9604 3.30588 -

Fig. (6). Probability density function and P-P plots for site 04.

 

(a) Probability Density Plot for Site 04 

 

(b) P-P Plot for Site 04 
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The Burr and GEV distributions have three which are the
shape, scale, and location parameters. Each of the parameters
of  the  distribution  varied  in  different  proportions  across  the
four sites. Their magnitudes and differentials were significant
in all sites investigated.

CONCLUSION

This study examined continuous probability distributions
to  determine  the  most  appropriate  model  that  best  fits  the
mixed traffic time headways on the adjoining lanes of the route
R27 BRT dedicated lanes  in  Cape Town,  South Africa.  Five
probability distribution models were fitted to the time headway
data  at  each  site,  represented  by  PDF  and  P-P  plots  using
MATLAB  2021  software.  The  goodness  of  fit  of  the
probability  models  was  assessed  by  the  Akaike  Information
Criterion  (AIC),  the  Schwartz  or  Bayesian  Information
Criterion  (SIC  or  BIC),  and  the  Hannan  Quinn  Information
Criterion  (HQIC)  model  performance  criteria,  respectively,
using  ModelRisk  software.  The  probability  distribution  with
the lowest AIC criterion and the largest  loglikelihood (LLH)
values  was selected as  the  model  that  best  fits  the  headways
across the four sites. Based on the postulated hypothesis, the
Burr distribution provided the overall best fit. This affirms the
assertion in a study by [24] that the Burr distribution model is
capable  of  modelling most  time headway distributions  under
many prevailing conditions.  The P-  values  were  greater  than
0.05.  Hence  the  null  hypothesis  was  accepted.  Based  on  the
results obtained, the following conclusions were drawn:

•  The  introduction  of  BRT  dedicated  lane  results  in  a
bottleneck  in  the  flow  of  traffic  on  their  adjoining  lanes,
characterized by speed drops and minimized time headways.

• The time headways are continuously distributed, fitting
the selected continuous probability distributions.

• The time headway differentials are significant compared
to  the  headway  of  BRT  buses  on  their  dedicated  lanes,  as
investigated in a related paper to this study by [25].

• The time headway distribution caused by BRT shows the
possible aberrant behaviour of drivers in a mixed traffic stream,
as shown by the skewness of the data.

Although  the  introduction  of  BRT-dedicated  lanes  was
justified in the study by A. E. Modupe and J. Ben-Edigbe [25],
which examined the capacity utilization effects of introducing
BRT-dedicated  lanes;  considering  the  time  headways
distribution investigated in this study, it would be appropriate
to recommend that a mixed traffic scenario is constructed with
BRT  at  some  selected  sections,  especially  areas  prone  to
congestion  along  the  corridor,  and  the  time  headway
distribution  should  be  analyzed  with  simulations  where  the
potential behaviour of drivers and traffic characteristics in that
scenario  are  necessary  to  understand.  Perhaps  the  created
mixed  traffic  scenario  ‘with  BRT’  could  engender  safer
headways, unlike the anomalous mixed traffic flows ‘without
BRT’ on the adjoining lanes caused by BRT, which threatens
the safety of commuters and pedestrians.
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