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Abstract:

Background:

Considering the frequent occurrence of accidents on icy bridges during winter nights, it would be advantageous to notify both road managers and
drivers  regarding  the  most  perilous  areas.  This  notification  would  allow  road  managers  to  address  the  icy  conditions  by  applying  de-icing
substances, while drivers could be more adequately prepared for potential hazards.

Methods:

In this study, the focus was on investigating k-nearest neighbor algorithms to predict nighttime icing caused by frost on three distinct bridges
located on the National Highways in Korea. The algorithms utilized atmospheric data as input, which was obtained from the weather agency's
website through an open API. The input data included relative humidity, air temperature, and dew point temperature, as well as the disparities in air
temperature and humidity between two consecutive days.

Results:

In order to assess the effectiveness of the prediction models, reference data were created using the fundamental principle that ice is formed when
the temperature of the pavement is below freezing and lower than the dew point temperature. Consequently, the developed algorithm demonstrated
favorable performance, achieving an accuracy of 95% when evaluated using a test dataset that occupies 30% of the entire data.

Conclusion:

Considering  the  increasing  focus  on  preventive  maintenance,  these  newly  developed  forecasting  models  can  be  employed  proactively  as  a
preventive measure against icing. This proactive approach will ultimately contribute to improving traffic safety on winter roads.
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1. INTRODUCTION

A significant number of traffic accidents occur on slippery
roads.  According  to  a  study,  these  accidents  lead  to  1,300
fatalities and 13,735 injuries annually in the United States [1].
In  Sweden,  a  report  indicated  that  only  14%  of  drivers
effectively adjust their speed on slippery surfaces [2]. Research
conducted in Portugal suggests that the likelihood of a collision
on  icy  roads  is  nine  to  ten  times  higher  compared  to  dry
surfaces  [3].  In  South  Korea,  data  over  a  span  of  five  years
shows  that  6,502  incidents  on  slippery  roads  resulted  in  198
deaths. In 2019, a tragic accident took place on an icy bridge in
South Korea, causing seven fatalities and numerous injuries. A
similar incident occurred again in 2022.
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Furthermore,  the Korean government has instructed road
maintenance  agencies  to  incorporate  pavement  temperature
measurements  into  their  nighttime  road  maintenance  patrols.
These measurements serve as a  foundation for  implementing
anti-icing  initiatives  [4].  Due  to  the  fact  that  atmospheric
sensors  are  typically  situated  far  from  the  roads,  reliable
monitoring  of  road  temperatures  becomes  challenging.
Moreover,  surface  temperatures  exhibit  substantial
fluctuations, even over short road sections, which restricts the
practicality  of  using  atmospheric  temperature  data  for  anti-
icing  purposes  [5].  As  a  result,  it  becomes  crucial  to
continuously  measure  pavement  temperatures  along  the
roadways  to  effectively  combat  black  ice,  particularly  on
bridges.

In  general,  snow  removal  operations  are  conducted
according to weather forecasts, where snowplows are deployed

https://opentransportationjournal.com
http://crossmark.crossref.org/dialog/?doi=10.2174/0126671212263648230921115634&domain=pdf
mailto:jhjang@kict.re.kr
mailto:reprints@benthamscience.net
http://dx.doi.org/10.2174/0126671212263648230921115634


2   The Open Transportation Journal, 2023, Volume 17 Jinhwan Jang

to  clear  snow  and  apply  chemicals  either  during  or  shortly
before  (1-3  hours)  the  snowfall.  However,  in  Korea,  the
absence  of  black  ice  forecasts  puts  a  significant  strain  on
maintenance personnel. As a result, they are required to carry
out  daily  patrols  along  the  roads,  imposing  a  substantial
workload  on  them.

In  order  to  address  this  problem,  the  present  research
focused on creating forecasting models for black ice to enhance
the effectiveness of anti-icing operations, specifically targeting
frost-induced  black  ice  on  bridges.  A  k-nearest  neighbor
model, a widely recognized machine learning algorithm, was
employed, utilizing atmospheric data as input. By utilizing this
forecasting model, nighttime occurrences of black ice can be
predicted  using  daytime  weather  forecasts.  This  enables
maintenance personnel to perform anti-icing activities, such as
patrolling and applying chemicals only when the occurrence of
black ice is anticipated.

2. LITERATURE REVIEW

Black ice can develop for several reasons [6], such as the
overnight freezing of melted snow, the freezing of rain on the
pavement with sub-zero temperatures, and frost bonding with
the  road  surface.  The  first  two  causes  can  be  anticipated
through  atmospheric  weather  forecasting  since  they  are
associated with snow or rain. However, the last cause can only
be identified through routine road maintenance patrols [7].

In order to forecast black ice, traditional approaches have
relied  on  physical  models  and  regression  analysis.  Physical
models utilize a surface energy balance model that considers
heat conduction, convection, radiation, and vapor movement to
estimate  pavement  temperature  [8  -  11].  On  the  other  hand,
regression models predict pavement temperature using various
data  sources,  including  atmospheric  data,  geometric  factors,
and  air  temperature  collected  from  probe  cars  [12  -  14].
However, both types of models have their limitations. Physical
models  require  extensive  data,  such  as  pavement  thickness,
heat transfer rate of pavement materials, and heat flux, which
may not always be readily available. This indicates that relying
solely  on  atmospheric  data  and  pavement  temperature  is
insufficient for accurate black ice prediction. While easier to
comprehend,  regression  models  struggle  with  predicting
variables that exhibit nonlinear correlations. Hence, this study
employed  a  machine  learning  model  to  overcome  the
limitations  of  previous  methods.

3. METHODOLOGY

The  k-nearest  neighbor  (k-NN)  algorithm  is  a  versatile
machine  learning  model  employed  for  classification  and
regression  tasks.  It  is  categorized  as  a  non-parametric
algorithm  since  it  does  not  assume  any  specific  data
distribution.

The functioning of the k-NN algorithm involves comparing
a new data point to its k-nearest neighbors within the training
dataset.  The  value  of  k  is  determined  by  the  user.  In
classification  tasks,  the  majority  class  label  among  the  k-
nearest  neighbors  is  assigned  to  the  new  data  point.  In
regression tasks, the predicted value is obtained by calculating

the average or weighted average of the target values associated
with the k-nearest neighbors.

The  k-NN  algorithm  is  straightforward  and  easy  to
understand, but its performance greatly depends on the choice
of k and the distance metric utilized. Consequently, the quest
for determining the optimal values of k and the distance metric
becomes crucial in order to obtain a well-performing model.

4. RESULT

4.1. Data Collection

4.1.1. Pavement Temperature and Atmospheric Data

In this research, road maintenance vehicles were fitted with
a road surface temperature sensor (depicted in Fig. 1), which
utilizes  an  infrared thermometer  to  gauge the  temperature  of
three bridges, as illustrated in Fig. (2). While the vehicle is in
motion,  the  sensor  is  capable  of  measuring  the  temperature
every 0.2 seconds. Pavement temperature data were obtained
from three bridges, each approximately 300 meters in length,
from December 2022 to February 2023. Data collection took
place on a total of 397 days, with measurements recorded once
per day during nighttime. Its precision is greatly enhanced by a
narrow  half-angle  of  5°,  resulting  in  accurate  surface
temperature  measurements  [15  -  17].  At  0°C,  the  sensor
exhibits  an  accuracy  of  ±0.3°C.  Furthermore,  concurrent
atmospheric data (air temperature and relative humidity) were
acquired from the closest weather station during the same time
period from an open API operated by the weather agency.

Fig. (1). Pavement temperature sensor.

4.1.2. Pre-processing of Pavement Temperature Data

In order to efficiently utilize the gathered data for de-icing
operations,  it  was  crucial  to  consolidate  the  information
according  to  specific  roadway  sections.  To  achieve  this,  the
Korean  government  implemented  a  standardized  node-link
system  (depicted  in  Fig.  3).  This  system  divides  the  entire
public  highway  network  into  nodes  and  links,  taking  into
account  various  roadway  characteristics,  such  as  bridges,
tunnels, overpasses, underpasses, intersections, and the number
of  lanes.  Since  the  temperature  of  the  pavement  differs
depending  on  the  type  of  roadway,  the  aggregation  of  data
using  the  node-link  system  is  regarded  as  a  logical  and
effective  approach.
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Fig. (2). Data collection sites.

Fig. (3). Standard node-link system of Korea.

Fig. (4). Air temperature vs. pavement temperature.

For  the  analysis  of  pavement  temperature,  the  standard
node-link  system was  employed  to  aggregate  the  data  into  a
single  median  value  on  a  daily  basis,  which  served  as  a
representative  measure  of  central  tendency.  Nevertheless,  as

the  measurements  of  pavement  temperature  obtained  from
moving vehicles may include outliers due to factors like debris
on  the  road,  driving  on  the  shoulder  lane,  intermittent  stops
during patrolling, and so on, it was crucial to adopt a careful
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aggregation method to  address  any unforeseen consequences
caused  by  these  outliers.  Among  the  three  commonly  used
measures of central tendency (mean, median, and mode), the
median  was  chosen  because  it  is  less  influenced  by  extreme
observations [18, 19].

4.1.3.  Analysis  of  Pavement  Temperature  and  Atmospheric
Data

Fig.  (4)  depicts  a  graph  illustrating  the  pavement
temperature  and  air  temperature  recorded  at  one  of  the
aforementioned three bridges. Similar patterns were observed
at the other two bridges. Overall, the bridge temperature was
consistently  lower  than  the  air  temperature,  with  the  air
temperature  exhibiting  greater  variability.  Tables  1  and  2
display  that,  on  average,  the  bridge  temperature  was
approximately 2 times lower than the air temperature, while the
maximum temperature reached about 4 °C higher. In contrast,
the  air  temperature  had  a  minimum  temperature  of
approximately  2  °C  lower  than  the  pavement  temperature.
Unlike the air temperature, which fluctuates considerably due
to air  flow, the pavement temperature is presumed to exhibit
relatively low variability due to the geothermal and latent heat
properties of the structure, as shown in Fig. (5).

Table  1.  Statistics  of  pavement  (bridge)  and  air
temperature.

Statistics Air Temp. Pav. (Bridge) Temp.
Mean -0.30 -2.47

Standard deviation 5.56 5.01
Minimum -16.00 -14.30

25% -3.00 -5.93
50% -1.00 -3.15
75% 3.00 0.73

Maximum 12.00 7.90
Table 2. Model performance.

Index Score
Accuracy 0.95
Precision 0.97

Recall 0.93
F1 score 0.95

4.2. Bridge Frost Prediction

4.2.1. Building Blocks of K-Nearest Neighbor Models

A  predictive  model  for  nighttime  black  ice  using
atmospheric data was established. The input data for a k-NN
model included temperature, humidity, dew point temperature,
temperature  differences  between  consecutive  days,  and
humidity  differences  between  consecutive  days  (see  Fig.  6).
These data were collected over a span of two years at the three
bridges  mentioned  earlier.  To  create  the  baseline  data,  we
combined  the  input  data  with  pavement  temperature  data
obtained from patrol vehicles. Detailed information regarding
the baseline data will be presented in the subsequent chapter.
The configuration of the k-NN model is illustrated in Fig. (6).
Since the scales of the input data varied, we applied standard

scaling to normalize the data prior to training the models. The
training and test sets were divided into a 7:3 ratio, and the raw
data were classified based on the ratio of dry/icing conditions
to  ensure  a  balanced  distribution  in  both  sets.  The  analysis
encompassed a total of 397 days, with 193 days classified as
icy conditions and 204 days as dry conditions.

Fig. (5). Boxplot of air and pavement temperature.

4.2.2. k-NN Algorithm Procedure

To implement the k-NN algorithm in Python, the following
steps were followed:

1. Load the labeled training dataset, which contains input
feature  vectors  and  their  corresponding  class  labels  or  target
values.

2.  Choose a  value for  k,  which represents  the number of
nearest neighbors to consider during predictions.

3. Compute the distances between a new input sample and
all  the  training  samples  using  a  distance  metric.  This  metric
quantifies  the  similarity  or  dissimilarity  between  two  data
points.

4.  Identify  the  k-training  samples  with  the  smallest
distances to the input sample. These samples will be the nearest
neighbors.

5.  For  classification  tasks,  assign  the  class  label  that
appears most frequently among the k-nearest neighbors to the
input sample.

4.2.3. Finding Optimal Parameters

Finding  the  best  value  for  k  is  crucial  in  the  k-nearest
neighbors (k-NN) algorithm. A small k can lead to overfitting,
making the model overly sensitive to noisy data. Conversely, a
large  k  can  result  in  over-smoothing,  causing  the  model  to
overlook local patterns in the data. The optimal value for k is
typically determined through techniques like cross-validation
or  grid  search.  These methods involve evaluating different  k
values  and  selecting  the  one  that  performs  best  based  on
evaluation metrics. Fig. (7) illustrates the process of selecting
the optimal k value, with a value of one being identified as the
optimal choice.
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Fig. (6). Building block of k-NN model.

Fig. (7). Model performance by k values.

Fig. (8). Model performance by distance measures.

4.2.4. Optimal Metric Selection

The choice  of  distance  metric  in  the  k-nearest  neighbors
(k-NN) algorithm depends on the characteristics of the data and
the  specific  problem  being  addressed.  Euclidean  and
Manhattan  distances  (Eqs.  1  and  2)  are  commonly  used

options.  Therefore,  the  selection  of  the  optimal  metric  was
performed  for  these  two  metrics,  as  shown  in  Fig.  (8).  The
analysis revealed that for a value of k equal to one, the optimal
metric  was found to be the Euclidean distance.  Typically,  k-
NN algorithms can be computationally expensive when dealing
with  large  datasets,  as  they  involve  calculating  distances  for

K-Nearest Neighbor 
Algorithm

Input 1

Air temp.

Input 2

Humidity

Input 3

Dew point

Input 4

Air temp. diff.

Input 5

Humi. diff.

Output

Frost/Non-frost
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each new sample against all the training samples. However, in
this study, the data size was relatively small (only a few bytes),
which did not pose a hindrance to the extensive computations.

(1)

(2)

where d(x,y) = distance between points x and y.

4.3. Assessment

4.3.1. Baseline Data Generation

To assess the precision of the predicted black ice data, it is
crucial  to  establish  a  baseline.  While  employing  a  reference
device to directly measure the road surface conditions would
be the most reliable and straightforward approach, it was not
feasible within the scope of this  study due to labor-intensive
requirements,  costs,  and  the  need  for  device  acquisition.
Instead, we relied on a physical principle described in Eq. (3),
which indicates that frost develops on the pavement when the
pavement  temperature  is  not  only  below  freezing  but  also
lower  than  the  dew  point  temperature.

(3)

where  Tp  =  pavement  temperature  and  Td  =  dew  point
temperature.

The  concept  of  dew  point  temperature  pertains  to  the
specific  temperature  at  which  moisture  in  the  air  reaches
saturation, resulting in the formation of fog or frost and causing
the  relative  humidity  to  reach  100%.  To  determine  the  dew
point  temperature,  the  commonly  employed  approach  is  to
utilize the Magnus formula, which is a widely accepted method
for  this  purpose  [15].  This  formula  calculates  the  saturation
vapor  pressure  over  liquid  water  at  a  given  temperature  (T)
using Eq. (4).

(4)

The Eq. (4) incorporates the parameters α (6.112 hPa), β
(17.62), and λ (243.12°C). By rearranging the terms in Eq. (4),
we  can  derive  Eq.  (5),  which  provides  an  expression  for  the
dew point (Td) based on the vapor pressure.

(5)

By  substituting  the  definition  of  relative  humidity
(E=RH*EW/100)  into  Eq.  (5),  we  can  derive  Eq.  (6),  which
enables  us  to  calculate  the  dew  point  (Td)  using  both  the
atmospheric  temperature  (T)  and  relative  humidity  (RH).

(6)

Eqs.  (4-6)  employ  the  well-established  Magnus  formula,
which is widely recognized as a reliable method for estimating
the dew point temperature using the atmospheric temperature

and  relative  humidity.  This  formula  exhibits  an  error  rate  of
approximately 0.35°C [16].

To validate the precision of the Magnus formula, a winter
road  segment  was  surveyed,  specifically  focusing  on  frost-
induced black ice occurrences. It was observed that black ice
formed (on the left) when the criteria for frost formation were
satisfied,  whereas  no  black  ice  was  observed  (on  the  right)
when those criteria were not met, as depicted in Fig. (9).

Fig. (9). Pavement with frost (left) and without frost (right).

Table 3. Confusion matrix.

Classification
Prediction

Dry Icy

Baseline
Dry 0.935 0.065
Icy 0.034 0.966

4.3.2. Performance of k-NN Model

The  developed  model  was  evaluated  using  a  test  dataset
consisting  of  119  samples,  which  accounted  for  30%  of  the
entire data, and the performance is presented in Table 1. The
evaluation metrics used, including accuracy, precision, recall,
and  F1  score,  are  commonly  employed  to  assess  the
effectiveness  of  machine  learning  models.  These  metrics,  as
defined  in  Eqs.  (7-10),  indicate  that  the  model  yielded
satisfactory outcomes with accuracy, precision, recall, and F1
score  values  of  0.95,  0.97,  0.93,  and  0.95,  respectively.
Additionally, Table 3 showcases the confusion matrix, which
further demonstrates the model's strong performance across all
cases.  Particularly  noteworthy  is  its  capability  to  accurately
identify  “icy”  conditions,  which  is  crucial  for  winter  road
maintenance.

(7)

(8)

(9)

(10)

5. DISCUSSION

Conventionally,  the  Road  Weather  Information  System
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(RWIS) has been used to predict black ice. To utilize RWIS,
Environmental Sensor Stations (ESSs) are essentially deployed
on the road, implying a substantial budget need to be allocated.
Unfortunately, no available RWIS ESSs are installed in Korea.
In  this  regard,  predicting  frost-induced  nighttime  black  ice
using readily available atmospheric data can be regarded as a
cost-efficient  countermeasure.  Additionally,  weather
phenomena are known to be recurrent, indicating that the k-NN
model developed in this study could be effectively applied. The
suggested model can be practically applied to nighttime road
maintenance  patrolling,  which  would  make  winter  road
maintenance  resources  more  efficient.

It should also be noted that the baseline data employed in
this analysis do not directly reflect the actual surface conditions
observed in the field. Instead, these values are calculated using
road surface temperature and atmospheric data. Additionally, it
should  be  noted  that  even  when  the  conditions  for  frost
formation are met based on physical laws, road icing may not
occur  in  situations  with  high  traffic  volume  [20,  21].
Nonetheless, the findings of this study hold significant value
from  various  perspectives.  From  the  standpoint  of  road
administrators,  if  the  presence  of  icing  due  to  frost  is
anticipated, they can proactively engage in anti-icing measures.
In  this  regard,  the  outcomes  of  this  study  can  be  practically
applied to real-world winter road maintenance activities.

CONCLUSION AND FUTURE STUDIES

In Korea, the occurrence of accidents caused by black ice,
which led to seven fatalities in 2019 and numerous injuries in
2023,  has  prompted  significant  changes  in  winter  road
maintenance practices. As a response, field workers have been
assigned  daily  maintenance  patrols  throughout  the  winter
season.  However,  there  has  been  a  growing  demand  among
field  personnel  for  an  improved  patrolling  schedule,
particularly  concerning  the  development  of  nighttime  ice
predictions.

Currently,  there  are  no  available  predictive  models
specifically for bridge frost treatment using atmospheric data.
As a result, maintenance patrols are often conducted on bridges
even  when  the  occurrence  of  black  ice  is  not  anticipated,
leading to inefficiencies in terms of labor and equipment. To
address this issue, a reliable machine learning model using k-
NN was explored to predict the potential for nighttime black
ice, yielding satisfactory results with an accuracy rate of 95%.
Notably, the strength of this model lies in its ability to forecast
bridge frost solely based on atmospheric data, making it highly
applicable to real-world scenarios. Utilizing the findings of this
study, winter road maintenance personnel can streamline their
patrols  by  focusing  solely  on  predicted  occurrences  of  black
ice.  This  approach  makes  winter  road  patrol  activities  more
efficient and scientifically informed.

However, it is essential to note that the evaluation of the k-
NN model  was solely based on baseline data  derived from a
physical principle. In the future, if feasible, it is recommended
to  gather  baseline  data  through  field  observations  using  a
device that accurately measures road slipperiness to ensure a
more robust evaluation process.
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