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Abstract:
Introduction:  This  paper  introduces  an  innovative  method  to  reduce  car  accidents  by  employing  mechanical
concepts and energy conservation to model drivers’ reactions in unexpected scenarios.

Methodology: The approach involves formulating equations to define drivers’ “internal stress energy,” indicative of
their propensity for aggressive driving under time pressure. A spatiotemporal model was developed using traffic data
from Highways England and accident data from Transport for London, analyzing around 200 car accidents with data
from 80 cameras over two years.

Results and Discussion: Findings suggest a correlation between drivers’ internal stress energy and car accidents,
highlighting the predictive value of the proposed equations in assessing road segment dangers. More specifically,
using the proposed model with 15-minute timeframes increased car accident prediction four (4) times compared to
the evenly spatiotemporal car accident distribution. With smaller timeframes, e.g., two (2) minutes, or with real-time
data, its predictive power would be significantly higher!

Conclusion: The equations developed offer a promising tool for estimating and preventing car accidents by modeling
the influence of drivers’ stress on driving behavior.
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1. INTRODUCTION

Car accident numbers remain high in the 21st century.
According  to  the  European  Transport  Safety  Council
(ETSC)  [1],  there  was  an  average  of  50  road  deaths  per
106  inhabitants  in  the  European  Union  (EU)  in  2017.
However,  only  a  tiny  amount  of  effort  is  put  into  deeply
understanding  this  social  problem.  It  seems  that  a

“normalization”  process  has  taken  place  [2],  and  car
accidents have been included in societies’ everyday lives.
This  could  be  explained using Freud’s  repression theory
[3] through  a  normalization  process  (to  feel  safe  and
continue  driving).

However,  transportation  theorists  often  ignore  these
parameters  and  overestimate  the  need  for  restricting
illegal driving. An illustrative example is the educational
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campaigns targeting young drivers. These campaigns are
usually scientifically grounded on research explaining the
factors that lead young drivers to car accidents [4-6], and
often  indicate  that  there  are  psychological  factors  that
result in irresponsible driving. These methods sometimes
overestimate  drivers’  freedom  and  personality  and,  at
other  times,  represent  the  drivers  as  deterministically
functioning  psychological  objects  [7-10].  This  paper
highlights  that  arriving  safe  depends  on  how  the  whole
system reacts in unexpected situations.

Quantitative road safety modeling is focused mainly on
crash  injuries’  severity  [11-18]  and  accident  analysis
focused on the development and application of advanced
econometric and statistical techniques [19]. On the other
hand,  driver  behavior  modeling  is  mainly  qualitative
[20-23].  Although  there  were  some  attempts  towards
quantitative driver behavior modeling, these were mainly
partial  models  about  fatigue,  gender,  and  distracted
driving [24-28], stress and risk [29-34], aggressive driving
behavior [35-38], dilemma zones at intersections [39-47],
car-following [48-57], etc. This paper is a modest proposal
toward quantifying driver’s behavior, trying to fill the gap
between qualitative and quantitative modeling.

This paper aims to approach drivers’ aggressive behavior
in  a  way  that  makes  it  possible  to  reduce  traffic  accidents
using live data. To do so, a theoretical tool using the energy
conservation  concept  was  developed  and  tested  in  London
Highways.  Specifically,  drivers  are  approached  as  rational
agents.  Each  agent  makes  an  assumption  for  their  arrival
time  and  an  expectation  for  the  average  velocity  they  will
have during different parts of the journey. Even though this
expectation might not be conscious in real life, we believe it
determines  drivers’  behavior.  Our  model  will  suppose  that
whenever  an  agent  fails  to  fulfill  their  expectations,  their
“internal  stress  energy”  increases,  making  them  drive
aggressively.  This  paper  will  expand  and  apply  this
theoretical  tool  to  London  Highways,  proving  that  high
spatiotemporal concentrations of internal stress-energy are
connected  to  car  accidents.  Thus,  compared  to  all  the
previous  approaches  mentioned  above,  the  novelty  of  this
research is that it introduces the concept of “internal stress
energy”  and  proves  it  to  be  an  effective  car  accident
prediction  indicator.

We named our approach the “KASSANDRA model” after
Cassandra, the daughter of Priam, the King of Troy, whose
warnings  for  disastrous  future  events  were  not  taken
seriously.  KASSANDRA  is  a  spatiotemporal  model  that
consists  of  a  set  of  equations  that  define  drivers’  “internal
stress energy,” indicative of their propensity for aggressive
driving under time pressure. The findings from the testing of
the proposed model  suggest a correlation between drivers’
internal  stress  energy  and  car  accidents,  highlighting  the
predictive  value  of  the  proposed  model  in  assessing  road
segment dangers. The model, its testing, and the findings are
presented in the following chapters.

2.  METHODOLOGY  AND  MATHEMATICAL  FORMU-
LATION

In  this  paper,  we  assume  that  before  the  start  of  a
journey,  each  driver  has  some  expectations  about  its

duration. A driver arrives on time at their destination when
their location at the expected time is identical to their actual
location x(duration)actual=x(duration)expected. However, the drivers’ initial
expectations  might  not  be  accurate,  either  because  they
misinterpreted the conditions before starting or because of
unexpected events that occurred during the journey. In this
case,  they  can  either  change  their  expectations  or  try  to
fulfill  them,  changing  their  driving  behavior.  The  main
assumption  of  this  paper  is  that  when  unexpected  events
occur,  a  number  of  drivers  will  change  their  behavior  to
arrive  on  time,  resulting  in  car  accidents.  Therefore,  for
driver  j,  we  assume  that  her  target  is  to  minimize  the
difference between her expected and actual journey duration.
Equivalently, keeping the duration constant and equal to the
expected  duration  to  minimize  the  difference  between  her
hypothetical  location  and  her  actual  location.  Uj  in  Eq.  (1)
represents the utility of the driver at the end of the journey.
In Eq. (1), td represents the expected duration of the journey,
and v is the velocity of the driver. Throughout the following
sections,  exp  is  used  to  indicate  a  variable  of  expected
values. If  there is no exp  indicator,  the variable represents
the actual conditions.

(1)

If  the  driver  arrives  at  the  destination later  than the
expected  time  (longer  journey  than  expected),  Uj  takes
negative  values.  If  the  driver  arrives  at  the  destination
before  the  expected  time  Uj  takes  positive  values.  Even
though  it  is  possible  to  have  positive  Uj  values,  this
happens  when  the  drivers  are  free  to  move  with  higher
velocities  than  expected.  These  conditions  are  not  of
interest in this paper, which emphasizes drivers who are
stressed because they fail to arrive on time. Without loss
of generality, we assume that the target of the driver is to
maximize Uj.

Eq. (1) represents the utility of the driver j at the end
of the journey (t=td). However, throughout the journey, the
drivers  make  estimates  and  assumptions  about  the
duration  of  their  journey.  They  often  try  to  assume
(consciously or not) if they are going to arrive on time or
not.  This  allows us  to  define a  utility  for  each driver  for
every possible time t value (Eq. 2).

(2)

Next,  we move from a temporal to a spatial  analysis.
Using  the  derivative  of  vexp,  we  get  Eq.  (3).  This  is
necessary because using road spatial segments instead of
temporal sections is more practical.

𝑈𝑗,𝑡𝑑 = 𝛥𝑥𝑗,𝑡𝑑 = 𝑥𝑡𝑑 − 𝑥(𝑒𝑥𝑝)𝑡𝑑
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(3)

The  journey  can  be  divided  into  n  consecutive
segments  (S1,  S2,...,  Sn,)  ,  each  with  a  starting  and  an
ending point. Suppose that xa is the starting point and xb

the final point of the segment Si. Then, we can define the
variable ∆Uj,Si

 which represents the utility that the driver
gained (or lost) during that segment Si (Eq. 4).

(4)

A negative ∆Uj,Si
 means that during that segment, the

driver was driving slower than their  initial  expectations,
increasing  the  actual  duration  of  their  journey.  It  goes
without saying that Uj,td is the sum of the ∆Uj,Si

 values (Eq.
5).

(5)

From the above relationships, we understand that the
drivers can increase their utility by adjusting their speed.
However,  drivers usually cannot unilaterally  adjust  their
speed throughout their journey, as the existence of other
drivers affects their behavior. Therefore, j also takes into
consideration  the  velocities  of  the  nearby  drivers  j.
Therefore driver’s  j  target  can be represented using Eq.
(6).

(6)

In this paper, we assume that all drivers perform the
same  estimations  about  their  journey.  This  does  not
indicate that  they perform the same journey but  that  all
the drivers expect to find the same driving conditions in
each  road  segment.  Even  though  this  assumption  limits
the findings of this research, it could be considered valid
when the drivers are experienced. The reader can find an
indicative  figure  about  drivers’  expectations  in  the
appendix.  Calculating  the  hourly  average  velocities,  we
can  see  some  spatial  and  temporal  patterns  that  can  be
easily  guessed/expected  by  the  drivers.  The
aforementioned assumption makes it possible to create a
“hypothetical”  driver  whose  velocity  is  identical  to  the
hourly  average  velocity  of  the  drivers  of  each  segment.

We will define the stress-energy of the flow for a road
segment  {xa,  xb}  using  the  classic  definition  of  dynamic
energy Energy = mgh, as in Eq. (7):

(7)

where:

N:  is  the  number  of  vehicles  in  the  examined  road
segment, and
g:  is  a  constant  similar  to  the  gravitational  constant
representing the inclination of the drivers to change their
velocity in order to reach their destination in time.

In this paper, we will assume that every agent has the
same g constant, meaning they have the same motivation
to reach their destination in time. To avoid examining g,
we will define the parameter e in Eq. (8). Examining e is
equivalent  to  examining  Energy,  as  g  is  a  constant.  The
number  of  vehicles  can  be  expressed  using  a  density
factor:  N  =  ρA,  where  ρ(vehicles/(m*lanes))  is  the  car
density and A(m*lanes) is the area examined. The number
of lanes is expressed using the parameter λ(lanes):

(8)

With  the  assumption  that  drivers  have  similar  ∆v  in  a
small part of the road path dx (homogeneity), the integral is
simplified  for  a  specific  road  area  (between  xa  and  xb),  as
follows. The wider the area examined, the more problematic
the  assumption  of  homogeneity  becomes.  Naming  L  the
distance between xa and xb, we get A = λL and from the Eq.
(8), we get Eq. (9):

(9)

The higher the e parameter, the more stressed the driver
is when she leaves the examined segment (S). We presented
a theoretical example to improve the understanding of e. Let
us  suppose  that  an  unexpected  congestion  takes  place.
“Unexpected” means that it does not normally appear at that
road segment during that time of the day (visit the appendix
for  more  information  about  expectations).  This  congestion
will  result  in  lower  actual  velocity  values  than  expected,
resulting  in  negative  internal  stress  energy  values

. The density of the flow (ρ)  and the
length  of  the  congested  segment  (L)  can  worsen  the
situation,  resulting  in  even  more  negative  internal  stress
energy values. That stress should be considered an indicator
associated with high car accident possibilities. When drivers
go  through  road  segments  that  have  high  e  values,  they
“collect” energy. However, a car accident is not expected to
happen during these parts. We assume that a car accident is
expected  to  occur  when  energy  radically  increases  or
decreases. To find these road parts, we calculate the drivers’
internal “power” (a derivative of e with respect to time t, for
a time period {ta, tb}) as shown in Eq. (10):

(10)

The energy of a road segment decreases in time when
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β  <  0  and  increases  when  β  >  0.  This  means  that  for  a
road  segment  {x1,  x2},   for

 and  vice  versa.  Therefore,  supposing  that
 for  a  road  segment  {x1,  x2}  and   for  a

road  segment  {x3,  x4},  for  continuous  functions  e  and  β
there will be a road segment {x2, s3} in which  will
hold, based on the Bolzano’s theorem.

In Fig. (1), we see a group of vehicles with high energy
moving  from  x  =  0  to  x  =  10.  As  the  time  variable
increases,  the  energy  values  of  the  left  road  segment
decrease  (β  <  0),  while  the  energy  of  the  right  road
segment increases (β > 0). Therefore, there will be an area
where β = 0, which means that a local optimum of e will
be found there.

For two consecutive road parts {x1, x2} and {x2, x3} (or
S1, S2), we define the parameter B, as the overall internal
power of the road segments in Eq. (11):

(11)

Summing  up,  in  this  paper,  we  will  use  the  highest

25% of B  values, subject to βS1  < 0 & βS2  > 0. In further
research, more assumptions can be tested to improve the
accuracy of the prediction.

3. APPLICATION
The relationships were applied using traffic flow data

from  the  Highways  England’s  Application  Programming
Interface  (API)  [58]  and  car  accident  data  from  the
Transport  for  London  (TfL)  API  [59].  For  both  datasets,
Rstudio was used to download data in JSON formats [60].
Highway cameras’ locations, together with car accidents,
were  inserted,  projected,  and  plotted  using  their
coordinates  in  Rstudio  [61]  and  the  “qtm”  function  for
plotting  [62].  As  the  car  accidents  dataset  includes  car
accidents  only  from  some  areas  of  the  highways,  all
cameras  that  do  not  intersect  with  these  areas  were
excluded.  The cameras left  can be divided into three (3)
groups: G1, G2, and G3 (Fig. 2).

Each of the three groups contains cameras capturing
data from different directions. Only “A” and “B” cameras
refer to the main road. The direction of “A” (“Away from
London”  or  “clockwise”)  cameras  is  opposite  from  “B”
cameras (indicating “Back to London” or “anti-clockwise”)

Fig. (1). Hypothetical energy profiles e (for ta and tb) along the path x = 0 to x = 10; ta and tb represent time sections with ta < tb.

𝛽𝑡𝛢
< 0 → 𝑒𝑡𝛢

> 𝑒𝑡𝛣

𝑡𝛢 < 𝑡𝐵
𝛽𝑡0

< 0 𝛽𝑡0
> 0

𝛽𝑡0
= 0

𝛣𝑥1,𝑥3
= |𝛽𝑥1,𝑥2

| + |𝛽𝑥2,𝑥3
| = |𝛽𝑆1| + |𝛽𝑆1| 
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Fig. (2). The areas G1, G2, and G3 are the parts of the England Highways that intersect with the car accidents dataset.

[63]. These cameras are going to be analyzed separately.
This  way,  we  have  the  following  semi-groups:  G1A  and
G1B,  G2A  and  G2B,  and  G3A  and  G3B.  The  consecutive
cameras  were  connected  manually  in  ArcGIS  with  line
segments. The characteristics of each camera were used
to  make  it  possible  to  understand  which  camera  is  first
and which follows while driving. The line segments were

then manually imported to Rstudio to use their lengths to
calculate β  and also to  divide the car  accidents  into two
groups (A and B). The car accidents closer to the left part
of the road were considered to belong to the A group, and
the car accidents closer to the right part of the road were
considered  to  belong  to  the  B  group.  This  division  was
necessary because TfL does not give details regarding the
direction of the cars in a convenient way.

Table 1. Data availability per year for the first five (5) cameras of G1A.

Cam\year 2014 2015 2016 2017

1 8,711 28,219 31,868 31,588
2 8,735 28,266 31,868 31,588
3 8,711 28,242 31,868 31,588
4 8,711 28,266 31,868 31,588
5 8,735 28,218 31,868 31,588
6 ... ... 31,868 31,588
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Table  2.  Necessary  data  for  each  road  segment.  For  each  specific  camera,  speed  values  and  volumes  were
needed.

Site Name Report Date Time Period Ending Time Interval Average V (mph) Total Volume

M25/5683A 2016-01-01T00:00:00 0:14:00 0 71 79
M25/5683A 2016-01-01T00:00:00 0:29:00 1 70 41
M25/5683A 2016-01-01T00:00:00 0:44:00 2 69 102
M25/5683A 2016-01-01T00:00:00 0:59:00 3 70 173

The  Highways  England’s  API  was  used  to  get  each
camera’s  available  traffic  flow  characteristics.  To  get  the
traffic data from the API, the ID of the camera was needed,
as  well  as  the  target  time  period.  Finally,  all  years  except
2016  and  2017  were  excluded  from  our  analysis  because
some  of  the  cameras  were  not  operating  during  the  whole
year in all years, and these years were excluded because they
could result in errors. For example, in the case of G1A, only
in the years 2016 and 2017 we could find the same number
of flow data for every camera (Table 1).

The matrices give basic information about the traffic and
vehicle  characteristics.  Three  (3)  sets  of  information  were
kept:  average  speed,  the  volume of  cars,  and  the  date  and
time  that  the  data  were  recorded.  A  sample  of  these
characteristics  is  presented  in  Table  2.

Using these data, some transformations were necessary
to  calculate  the  internal  power  β  parameter.  These
transformations  can  be  found  in  the  Appendix,  along  with
information about the calculation of the expected velocities.
This way, we could calculate the β parameter for each road
segment (Table 3).

To apply the methodology proposed, we calculated the B
values  only  for  those  consecutive  road  segments  {xi,  xi+2}
with  ,  based on Eq. (10) (Table
4).

Finally,  when  these  values  appeared,  we  compared  the
number  of  car  accidents  in  the  road  segments  with  the
highest B values (top 25%) with the number of car accidents
in all the other road segments (Fig. 3).

We expected to find car accidents in the examined areas.
To test that assumption, we chose a smaller area inside the
area  {xi,  xi+2}  close  to  the  middle  camera  xi+1.  This  area’s
diameter was considered equal to L (the length of the road
segments).  We examined if  a  car  accident  occurred in  that
area (approximately 600 m) for a duration of 15 minutes. If
an accident appeared under these circumstances, we would
consider that accident to have been predicted. Finally, even
though  the  methodology  was  applied  to  all  six  (6)  groups:
G1A,  G1B,  G2A,  G2B,  G3A,  and  G3B,  the  B  areas  were  all
excluded  because  they  contained  cameras  that  were  not
operating  properly.

In Fig. (3), the accidents were represented using solid
circles.  If  an  accident  occurred  inside  the  circle,  it  was
thought to have been predicted. In this specific case, using
an area that is ¼ of the whole area and a time frame that
is ½ of the whole time, we have predicted 50% of the car
accidents.  This  means  that  a  specific  spatiotemporal
section, which represents 1/8 of the overall, contains 50%
of the car accidents (>> 1/8); therefore, the assumptions
of this paper have been verified.

Table 3. Calculating β  values for the first 15-minute timeframes for road segment 1 in the G1A group with
coordinates (x1, y1), (x2, y2) = (24538,6700698),(24855,6700337).

- Date & Time L (m) v (mph) N (vehicles) vexp (mph) ∆t (sec) βs

1 1/1/2016 0:14 481 32.18 78 28.77 840 -0.051
2 1/1/2016 0:29 481 31.73 40.5 28.77 900 0.047
3 1/1/2016 0:44 481 31.51 98 28.77 900 0.064
4 1/1/2016 0:59 481 31.51 172.5 28.77 900 0.058
5 1/1/2016 1:14 481 31.29 197 28.05 900 0.020

Table 4. Calculating power values for the first 15-minute temporal-segments for the first five (5) road segments
in the G2A group.

Date & Time B(x 0, x2) B(x1, x3) B(x2, x4) B(x3, x5)

1/1/2016 0:14 - 0.082 - -
1/1/2016 0:29 - - - 0.019
1/1/2016 0:44 - - - -
1/1/2016 0:59 - - - -
1/1/2016 1:14 - - - -

𝛽𝑥𝑖,𝑥𝑖+1
< 0 & 𝛽𝑥𝑖+1,𝑥𝑖+2

> 0
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Fig. (3). Four (4) consecutive hypothetical road segments for two (2) 15-minute temporal segments (ta, tb).

4. RESULTS AND DISCUSSION
The car accidents in the three areas examined during a

period of two (2) years are 214. Based on data availability,
the sum of the road segments examined in the areas G1A,
G2A,  and  G3A  is  77,  each  containing  a  camera  in  the
middle. The available data for each camera corresponds to
63,456 15-minute entries. If these accidents were evenly
distributed  in  space,  then  there  would  be  214/77=2.78
accidents  in  every  road  segment.  Similarly,  if  the
accidents were evenly distributed in time, there would be
a probability of 2.78/63,456=4.3·10-5=0.0043% of having a
car  accident  in  every  15-minute  entry.  Equivalently,  we
get this  percentile  by diving the number of  accidents by
the  time  entries,  multiplied  by  the  number  of  cameras
(spatial  entries):  214/(63,456.77)=4.3·10-5  car  accidents/
(approximately 600 m .15 minutes).

Nevertheless, car accidents are not evenly distributed
in space and time. This paper shows that the areas with
high  B  values  correspond  to  a  higher  probability  of  car
accidents. Using the highest 25% of B values of each road
segment {xi,  xi+2},  subject  to  ,
we  get  11  car  accidents,  which  are  considered  as
“predicted.”  The  condition  
applies  to  249,420  spatiotemporal  entries.  We  used  the
top 25% of them to search for car accidents around them,
resulting  in  62,355  spatiotemporal  entries.  Finally,  the
probability we get is 11/62,355=1.76·10-4=0.0176%, which
is  considerably  higher  than  the  previous  one.  This

probability is lower in the area G1A and higher in G2A and
G3A.

By  dividing  the  probabilities,  i.e.,  1.76·10-4/4.3·10-5  =
4.09,  we  find  that  by  using  the  proposed  model,  we  can
find four (4) times more car accidents compared to what
we would have found if  they were evenly distributed. As
explained above, if we use lower time frames, this number
will  significantly increase;  the lower the time frame, the
more significant the increase and the same goes for real-
time data.

Finally, we compared these results with the probability
we get when we use 25% of the highest car volumes. The
probability  that  we  get  is  2.14·10-5.  This  means  that
internal  stress  energy  is  a  more  effective  indicator  than
high car volumes regarding car accident prediction.

The  overall  number  of  accidents  (214)  also  includes
accidents  that  have  taken  place  in  B  parts  because  of
inaccurate  spatial  exclusion.  These  accidents  cannot  be
predicted  using  traffic  data  from  the  A  parts.  If  the
accidents in B areas were removed from the datasets, the
probability of predicting a car accident would have been
even  higher  than  the  even  car  accident  distribution.  We
believe that the accuracy of a prediction can be radically
improved in case more frequent data are available (e.g.,
every 2 minutes instead of 15 minutes).

𝛽𝑥𝑖,𝑥𝑖+1
< 0 & 𝛽𝑥𝑖+1,𝑥𝑖+2

> 0

𝛽𝑥𝑖,𝑥𝑖+1
< 0 & 𝛽𝑥𝑖+1,𝑥𝑖+2

> 0
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CONCLUSION,  PROPOSALS,  AND  ORIENTATIONS
FOR FUTURE RESEARCH

In this paper, we propose a method that can be used to
predict  car  accidents  inspired  by  mechanics  and  the
conservation  of  energy.  The  basic  assumption  is  that
drivers change their behavior during their trip to arrive on
time  at  their  destination.  The  drivers’  inability  to  fulfill
their  expectations  during  the  trip  is  counted  using  an
“internal  stress  energy”  parameter.  The  more  they  feel
they  will  be  late,  the  more  nervous  they  become,
increasing their energy. Each driver behaves like an agent
aiming for  energy  minimization.  The model  is  applied  in
London  Highways  using  traffic  data  from  London
Highways  and  car  accidents  data  from  TfL.  Using  two
years’ data, we prove spatial variations of drivers’ internal
stress  “power”  are  connected  with  an  increased
probability of a car accident. More specifically, using the
proposed model with 15-minute timeframes increased car
accident prediction four (4) times compared to the evenly
spatiotemporal  car  accident  distribution.  The  model  can
be easily applied when live traffic data are available. With
such  data,  we  expect  a  dramatic  improvement  of  the
model  as  its  accuracy  increases  and  the  time  frame
decreases.  The  proposed  model  can  be  tested  in  other
areas to estimate its accuracy and potential uses. Overall,
the  model  can  be  expanded  to  analyze  real-time  data  to
make predictions and help stakeholders act in dangerous
conditions.

The  novelty  of  this  research  is  that  it  introduces  the
concept of “internal stress energy” and proves it to be a
more effective car accident prediction indicator than high
car volumes, given there are data of small timeframes or
real-time data available. Nevertheless, the main limitation
of  the  research  is  that  the  concept  was  tested  in
timeframes of  not  less  than 15 minutes,  a  case in  which
even better results are expected.

In further research, the assumptions of the model can
be studied. For example, it is interesting to find out if the
traffic conditions become less dangerous when the drivers
change their expectations and adapt to their environment.
It is also interesting to find out if the probability of a car
accident increases when the energy is radically released.
Finally, neural networks can be used to find more accurate
correlations  between  car  accidents  and  the  drivers’
internal  stress  energy,  which  might  not  be  easily
noticeable.
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APPENDIX
This  part  describes  how  the  main  equations  are

transformed to match the examined dataset.  Traffic flow
can be defined as the number of vehicles passing through
a point for a period of time .  At the same time, flow
is  also  the  density  of  the  cars  in  a  road  segment,
multiplied by the average velocity of these cars Q = ρvλ.
In this specific case, λ  is used to indicate the number of
lanes,  as  density  is  defined  using  the  number  of  lanes.
Finally,  combining  these  two  relationships,  we  get  the
density  .

In these relationships, ∆t is predefined and depends on
data availability. Assuming that the difference ∆t between
ta and tb is the same as the time difference needed for the
data “Ndata” to be collected, the relationship created in
the methodology becomes Εq. (A.1):

(A.1)

Parameter  β  refers  to  a  road  segment  {x1,  x2}.
Therefore, we get the values v  and ρ  using the following
two  cameras:  the  camera  at  the  beginning  of  the  road
segment  and the  camera  at  the  end.  The  average of  the
values  of  the  two  cameras  is  used  to  get  the
characteristics of the segment as shown in Eqs. (A.2 and
A.3):

(A.2)

𝑄 =
𝑁

𝛥𝑡

𝜌 =
𝑁

𝛥𝑡 𝑣 𝜆

𝛽 = 𝐿2 𝜆 
𝜌𝑏 (

𝑣𝑏
𝑣𝑒𝑥𝑝

−1)−𝜌𝑎 (
𝑣𝑎

𝑣𝑒𝑥𝑝
−1)

𝛥𝑡

= 𝐿2
𝑁𝑑𝑎𝑡𝑎,𝑏 (

1
𝑣𝑒𝑥𝑝

−
1

𝑣𝑏
)−𝑁𝑑𝑎𝑡𝑎,𝑎 (

1
𝑣𝑒𝑥𝑝

−
1

𝑣𝑎
)

(𝛥𝑡)2 

𝜌 = 0.5(𝜌𝑥1
+ 𝜌𝑥2

) 

http://trishighwaysengland.co.uk/detail/trafficflowdata
https://api.tfl.gov.uk/swagger/ui/index.html?url=/swagger/docs/v1%23!/AccidentStats/AccidentStats_Get#!/AccidentStats/AccidentStats_Get,
https://api.tfl.gov.uk/swagger/ui/index.html?url=/swagger/docs/v1%23!/AccidentStats/AccidentStats_Get#!/AccidentStats/AccidentStats_Get,
https://api.tfl.gov.uk/swagger/ui/index.html?url=/swagger/docs/v1%23!/AccidentStats/AccidentStats_Get#!/AccidentStats/AccidentStats_Get,
https://webtris.nationalhighways.co.uk/
https://webtris.nationalhighways.co.uk/
https://api.tfl.gov.uk/
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(A.3)
To  better  understand  these  relationships,  the  most

important part is to remember that they refer to the same
road segment for consecutive time periods (Fig. 4).

Velocity 1

Velocity 2

Velocity 3

Velocity 4

Velocity 5

Velocity 6

Camera 1
(x1,ta)

Camera 1
(x1,tb)

Camera 2
(x2,tb)

Camera 3
(x3,tb)

Camera 4
(x4,tb)

Camera 2
(x2,ta)

Camera 3
(x3,ta)

Camera 4
(x4,ta)

Fig. (4). A hypothetical road divided into three (3) groups using four (4) cameras. Flow density, as well as cars’ velocity, change over
time. To get the energy e and the derivative β of each part, consecutive cameras are used.

𝑣 = 0.5(𝑣𝑥1
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Fig. (5). Average velocities for the first nine (9) road segments of G1A. For two (2) years of data, the average hourly vehicles’ velocities
are calculated using camera data. Y-axis: velocity (mph). X-axis: time (24 hours). Average velocities in consecutive parts change steadily,
indicating that the utility’s function continuity assumption is accurate. In addition, there is no high velocity deviation during the daytime
(in these road segments), which means that the drivers can create (subconsciously) an imaginative profile of the average velocities for the
whole path.

This  way Na  refers  to  the volume data  recorded at  ta

and Nb refers to the volume data recorded at tb. The same
applies to va and vb. ∆t is 15 minutes based on the API data
availability. In any case, all N and v values are the result
of  getting  the  average  values  from  the  road  segment’s
starting and ending camera examined. Finally, vexp  is the
average  hourly  velocity  of  a  specific  road  segment,
calculated  using  average  yearly  values  (Fig.  5)  for  an
extended period of  time.  Drivers  expect  to  find the road
conditions they usually find at each road segment. We get
these values using the 2-year  data downloaded from the
London Highways API.
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