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Abstract:
Background:  Faced  with  the  tragedies  caused  by  black  ice  in  winter,  especially  on  bridges,  it  is  imperative  to
forecast black ice for preventive maintenance and to notify drivers approaching the dangerous spots.

Methods: In this study, three different machine learning algorithms-Deep Neural Network (DNN), Random Forest
(RF), and Support Vector Machine (SVM)-were employed to predict nighttime black ice induced by frost on three
bridges  in  Korea.  Input  data  consisted  of  atmospheric  data  (air  temperature,  relative  humidity,  dew  point,  and
differences  between  air  temperature  and  relative  humidity  over  two  consecutive  days)  provided  by  the  weather
agency.

Results: To assess the employed models, reference data were generated based on the physical principle that ice
forms  when  the  pavement  temperature  is  lower  than  the  dew  point  temperature  and  negative.  The  pavement
temperature was obtained using an infrared surface temperature sensor mounted on a maintenance patrol vehicle.
Consequently, DNN and RF showed higher performance with an accuracy of 95%, followed by SVM with an accuracy
of 92.5%.

Conclusion:  Due  to  the  use  of  easily  obtainable  atmospheric  data,  the  findings  of  this  study  can  be  practically
applied to preventive maintenance and driver information, thereby enhancing traffic safety.
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1. INTRODUCTION
Many traffic accidents occur on wet and icy roads. A

report indicates that in the United States, such conditions
cause  1,705  deaths  and  138,735  injuries  annually  [1].
According  to  a  Swedish  study,  only  14%  of  drivers
properly  adjust  their  speed  when  navigating  slippery
surfaces [2]. Research from Portugal shows that the risk of
an  accident  on  icy  roads  is  nine  to  ten  times  higher
compared to dry roads [3]. Data from South Korea reveals
that 122 fatalities resulted from 4,392 accidents on slick

roads  over  five  years.  In  2019,  a  severe  accident  due to
freezing rain on an icy road in South Korea caused seven
deaths and numerous injuries; a similar incident occurred
again in 2023 [4].

In Korea, all the tragic accidents that caused fatalities
and garnered social attention have occurred on bridges at
night. Bridges that transverse rivers or valleys tend to be
affected  by  moisture  or  strong  winds,  indicating  higher
possibilities  of  black  ice  formation  [5].  At  night,  drivers
can  hardly  identify  black  ice  on  the  road  ahead.  In  the
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absence  of  precipitation,  drivers  normally  regard  their
traveling  routes  as  non-slippery.  During  winter  nights,
frost  can  induce  black  ice  when  traffic  volume  is  low.
Since  drivers  usually  maintain  high  speeds  on  roads
without  precipitation,  frost-induced  nighttime  black  ice
can cause severe accidents. In January 2024, frost-induced
black  ice  caused a  pile-up  of  38  vehicles  in  Sejong City,
Korea.

To addrress this issue, this study developed black ice
forecasting models to improve the efficiency of anti-icing
efforts, particularly for frost-caused black ice on bridges.
Three  widely  recognized  machine  learning  algorithms-
Deep  Neural  Network  (DNN),  Random  Forest  (RF),  and
Support  Vector,  achine  (SVM)-were  explored  to  forecast
black ice using atmospheric data (air temperature, relative
humidity,  dew  point,  and  differences  between  air
temperature  and  relative  humidity  over  two  consecutive
days). With these forecasting models, nighttime black ice
can  be  accurately  predicted  using  readily  available
atmospheric  data,  enabling  maintenance  personnel  to
carry  out  anti-icing  activities  (such  as  patrolling  and
applying chemicals) and provide the predicted information
to drivers approaching the hazardous location via variable
message signs.

2. METHOD

2.1. Methods in Previous Studies
Black  ice  can form for  various  reasons  [6],  including

freezing  melted  snow  overnight,  freezing  rain  on
negatively tempered pavement, and frost bonding with the
road surface. The first two causes can be predicted with
atmospheric weather forecasting since they are caused by
snow or rain. However, the last cause can only be detected
through regular road maintenance patrols [7].

Physical models and regression analysis have primarily
been  used  to  predict  black  ice.  Physical  models  use  a
surface  energy  balance  principle  based  on  heat
conduction,  convection,  radiation,  and  vapor  movement
estimates  to  predict  pavement  temperature  [8-11].
Regression  models  predict  pavement  temperature  using
different  data,  such  as  atmospheric  data,  geometry,  and
air  temperature from probe cars  [12-14].  However,  both
types of models have limitations. Physical models require
hard data, such as pavement thickness, heat transfer rate
of pavement material, and heat flux, which are not always
obtainable,  indicating  that  atmospheric  data  and
pavement  temperature  alone  cannot  effectively  forecast
black  ice.  Regression  models  are  relatively  simple  to
understand  but  struggle  with  predicting  variables  that
have  a  non-linear  correlation.

To overcome the limitations of the previous methods,
three machine learning models were used: DNN, RF, and
SVM. The input data for these models consisted of readily
available  atmospheric  data,  which  are  provided  by  the
weather  agency  on  a  real-time basis.  This  indicates  that
the suggested methodology can be practically applied in
real-world practices without requiring substantial budget
investments.  Unlike  conventional  physical  models  that

require various types of road weather data, the machine
learning models developed in this study only necessitate
easily  accessible  atmospheric  data,  thereby  enhancing
practicability. Additionally, machine learning models have
been  recognized  for  their  superiority  over  conventional
regression  models.  In  summary,  practicability  and
performance  are  the  two  primary  advantages  of  the
approach  pursued  in  this  study.

2.2. Prediction Method Explored in this Study

2.2.1. Deep Neural Network
A Deep  Neural  Network  (DNN)  is  a  type  of  machine

learning algorithm that can analyze complex features from
a  given  set  of  examples  by  utilizing  multiple  layers.
Examples  of  popular  deep  learning  categories  include
deep  neural  networks,  recurrent  neural  networks,  and
convolutional  neural  networks,  which  have  shown
exceptional performance in various fields, including image
processing, speech/audio recognition, and time-series data
analysis, sometimes even surpassing human capabilities.

2.2.2. Random Forest
A Random Forest (RF) algorithm is a machine learning

approach that consists of a group of decision trees, where
each  tree  in  the  ensemble  is  built  using  a  data  sample
drawn randomly and with replacement from a training set
known as the bootstrap sample. To add more variety to the
dataset  and  decrease  correlation  among  decision  trees,
feature  bagging  is  introduced  as  another  source  of
randomness.  The  method  for  making  predictions  will
depend  on  the  problem  being  tackled;  for  a  regression
task, the individual decision trees are averaged, while for
a classification task, the predicted class is determined by
the most frequent categorical variable through a majority
vote.

2.2.3. Support Vector Machine
A  Support  Vector  Machine  (SVM)  is  a  type  of

supervised machine learning algorithm that is commonly
utilized  for  classification  and  regression  analysis.  SVM
models  are  typically  considered  non-stochastic  binary
linear  classifiers,  where  instances  are  represented  as
points  in  a  space  domain  and  are  mapped  to  separate
groups  based  on  the  widest  gap  between  them.  New
instances are then categorized by mapping them into the
constructed  space  and  placing  them into  one  of  the  two
categories based on the established gap function.

2.3.  Baseline  Data  Generation  for  Evaluating
Predicted Black Ice Information

In  order  to  evaluate  the  accuracy  of  the  predicted
black  ice  information,  baseline  data  is  necessary.  While
using a reference device to measure road surface status
would be the most reliable and straightforward method, it
was  not  practical  for  this  particular  study  due  to  the
associated  labor  requirements,  cost,  and  the  need  to
acquire the device. Instead, a physical principle expressed
in Eq. (1) was used, which states that frost on a pavement
forms  when  the  pavement  temperature  (Tp)  is  not  only
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negative  but  also  lower  than the  dew point  temperature
(Td).

(1)

The dew point temperature (Td) is the temperature at
which  air  becomes  saturated  with  moisture  and  water
vapor begins to condense. The calculation of the dew point
temperature  is  often  done  using  the  Magnus  formula,
which is a widely used method for this purpose [15]. Using
the  Magnus  formula,  the  dew  point  temperature  can  be
calculated  from the  actual  vapor  pressure  (e)  of  the  air.
First, calculate the actual vapor pressure (e) using relative
humidity (RH) and saturation vapor pressure (es(T)) using
Eq. (2).

(2)

In Eq. (2), es(T) can be estimated using Eq. (3). In this
context,  T  represents  the  air  temperature  in  degrees
Celsius  (°C);  a  and  b  are  empirically  derived  constants.
Different sets of constants a and b are used depending on
the temperature range and the type of surface (water or
ice). For temperatures over liquid water, the typical values
are 17.62 and 243.12°C for a and b, respectively.

(3)

Then, the dew point temperature (Td) can be calculated
by rearranging the Magnus formula to solve for (Td) using
Eq.  (4).  The  dew  point  temperature  computed  by  the
Magnus formula is widely accepted due to its performance
with an error of around 0.35°C [16].

(4)

To verify  the  Magnus  formula,  a  wintertime highway
segment  was  patrolled  while  measuring  pavement
temperature. The results showed that frost-induced black
ice  occurred  (on  the  left)  when  the  conditions  for  frost
formation were met,  whereas no black ice was observed
(on  the  right)  when  those  conditions  were  not  met,  as
illustrated  in  Fig.  (1).  The  patrolled  roadway  had  a  low
traffic volume of fewer than 100 vehicles per hour [17].

3. RESULT

3.1. Data Collection
In this study, we equipped road maintenance vehicles

with a road surface temperature sensor, as shown in Fig.
(2).  This  sensor  employs  an  infrared  thermometer  to
measure the temperature of three specific bridges, which
are  designated  as  the  'black  ice-prone  segment'  by  the
road  agency.  Nighttime  maintenance  patrols  were
conducted  on  these  bridges  on  a  daily  basis  during  the
winter. The sensor operates continuously while the vehicle
is  in  motion,  providing  temperature  measurements  at
intervals  of  0.2  seconds.  We  collected  pavement

temperature  data  from  three  bridges  (Fig.  3),  each
approximately 300 meters long, spanning from December
2021 to March 2023, encompassing two complete winter
seasons.  Data  collection  occurred  over  397  days,  with
measurements taken once per day during nighttime hours.
The  sensor's  precision  is  significantly  improved  by  its
narrow  half-angle  of  5°,  ensuring  accurate  surface
temperature readings [18]. When the temperature is 0°C,
the sensor maintains an accuracy of ±0.3°C. Additionally,
we  obtained  concurrent  atmospheric  data,  including  air
temperature  and  relative  humidity,  from  the  nearest
weather  station  operated  by  the  weather  agency  during
the same time period.

Fig. (1). Pavement with frost (left) and without frost (right).

Fig. (2). Surface temperature sensor.

3.2. Data Analytics
The  pavement  temperature  data,  collected  at  a

sampling rate of 0.2 seconds, were aggregated to derive a
single  median  value  for  each  bridge.  This  median  value
serves as a representation of central tendency. Among the
three  common  measures  of  central  tendency  (mean,
median,  and  mode),  the  median  is  widely  acknowledged
for  its  resilience  in  mitigating  the  impact  of  extreme
observations  [19,  20].  Fig.  (4)  shows  graphs  of  the

Tp ≤ 0℃ and Tp ≤ Td  
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pavement  temperature  and  air  temperature  collected  at
the  three  bridges  described  above.  The  order  of  the
graphs  is  the  same  as  in  Fig.  (3).  Overall,  the  bridge
temperature  was  observed  to  be  lower  than  the  air
temperature,  and  the  variability  was  observed  to  be
greater in the air temperature. As shown in Table 1,  the
average  and  maximum  bridge  temperatures  were

approximately  2°C  and  4°C  lower  than  the  air
temperatures, respectively. Conversely, the minimum air
temperature  was  roughly  2°C  lower  than  the  bridge
temperature.  Unlike  air  temperature,  which  fluctuates
significantly  with  airflow,  pavement  temperature  is
thought to exhibit relatively low variability due to the heat
stored in the structure and the heat from passing vehicles.

Fig. (3). Data collection locations.

Table 1. Statistics of pavement (bridge) and air temperature.

Statistics Air Tem. Pav. (Bridge) Temp.

Mean -0.30 -2.47
Standard deviation 5.56 5.01

Minimum -16.00 -14.30
25% -3.00 -5.93
50% -1.00 -3.15
75% 3.00 0.73

Maximum 12.00 7.90

Data collection 

points (bridges)

℃

Fig. 4 contd.....
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Fig. (4). Air temperature vs. pavement (bridge) temperature.

Fig.  (5)  illustrates  the  temperature  and  humidity
characteristics observed in one of the three bridges during
frost formation. The red dotted lines represent instances
of  frost  formation  as  determined  by  equation  (1),
indicating  when  the  pavement  temperature  falls  below
freezing  and  is  lower  than  the  dew  point  temperature.
Upon  examining  the  temperature  and  humidity  patterns
during  frost  formation,  it  becomes  evident  that,  in  most
cases,  the  temperature  rises  after  a  sharp  decline  while
humidity remains consistently above 75%. Furthermore, it
is  apparent  that  frost  can  occur  even  when  the  air
temperature is above freezing, provided that the pavement
temperature  is  below  0°C.  The  temperature  difference
between the air temperature and the bridge temperature
was observed to be as much as 4°C. Based on the analysis
conducted,  it  can  be  inferred  that  during  winter,  frost
formation is more likely to occur when temperatures are
on  the  rise,  as  long  as  the  pavement  temperature  still
remains below 0°C.

4. BLACK ICE PREDICTION

4.1. Building Blocks of Machine Learning Models
Based on the above-investigated results, we developed

a nighttime black ice prediction model using atmospheric
data.  The  input  data  for  the  machine  learning  models
consisted  of  temperature,  humidity,  temperature
difference from the previous and following days, humidity
difference from the previous and following days, and dew
point temperature, which were collected over a two-year
period at the three points mentioned earlier. The baseline
data were generated using equations (1-4) with the input
data and pavement temperature data collected by patrol
vehicles.  We  employed  three  well-known  prediction
models, namely DNN, RF, and SVM, which are known to
have generally superior performance. Fig. (6) depicts the
building  blocks  for  the  three  models.  Since  the  scale  of
each  input  data  was  different,  we  standardized  the  data
using  a  standard  scaler  before  training  the  models.  The
training and test sets were classified into a 7:3 ratio, and
the  dry/icing  data  ratios  of  the  raw  data  were  applied

 

℃
℃
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during classification to ensure a balanced distribution in
both sets. The total data used for analysis consisted of 397

days,  including  193  days  of  icy  and  204  days  of  dry
conditions.

Fig. (5). Boxplot of air and pavement temperature.

Fig. (6). Cases of frost-induced black ice formation.
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Fig. (7). Building blocks of machine learning models.

Fig. (8). Learning process of deep neural network model.

4.2. Deep Neural Network
The DNN model was built using the TensorFlow Keras

platform.  As  shown  in  Table  2,  the  model  had  a  30x20
hidden layer and a total  of  821 parameters.  The optimal

number  of  hidden  layers  was  determined  with  an  error-
and-trial process [21]. The rectified linear unit activation
function  was  used,  and  the  Adam optimizer  was  applied
with 50 epochs. Fig. (7) shows the training process of the

Machine Learning
� Deep Nueral Network
� Random Forest
� Support Vector Machine

Input 1

Air temp.

Input 2

Humidity

Input 3

Dew point

Input 4

Air temp. diff.

Input 5

Humi. diff.

Output

Frost/Non-frost



8   The Open Transportation Journal, 2024, Vol. 18 Jinhwan Jang

built  model,  using accuracy as  the evaluation metric.  As
shown  in  Table  3,  the  predicted  results  of  the  model
demonstrated  overall  satisfactory  performance,  with  a
particularly  notable  100%  prediction  rate  for  icing
conditions.  Thus,  the  performance  of  the  model  was
deemed  satisfactory.
Table 2. Constructed deep neural network model.

Layer (type) Output Shape Number of Parameter

dense (Dense) (None, 30) 180
dense_1 (Dense) (None, 20) 620
dense_2 (Dense) (None, 1) 21

Total params: 821
Trainable params: 821

Non-trainable params: 0

4.3. Random Forest
Random  Forest  is  a  prediction  model  that  averages

multiple  decision  trees,  so  it  is  crucial  to  determine  the
optimal  number  of  decision  trees.  To  achieve  this  while
keeping  other  parameters  fixed  at  constant  values,
decision  trees  ranging  from  1  to  50  were  investigated
using accuracy as the evaluation metric. Consequently, the
optimal number of decision trees was determined to be 11,
as  depicted  in  Fig.  (8).  Other  parameters,  excluding
decision trees, were estimated using the “GridSearchCV”

class from the sci-kit-learn library in Python. The resulting
optimal  parameters  were  determined  to  be  {‘criterion’:
entropy, ‘max_depth’: 10, 'max_features': auto, 'max_leaf_
nodes': 30, and 'n_estimators': 12}. Unlike other models,
the RF model can calculate the importance of each input
variable.  Analyzing  the  widely  used  Gini-importance  for
impurity  measurement,  it  can  be  seen  from Table  4  and

Table  3.  Confusion  matrix  of  deep  neural  network
model.

Classification
Prediction

Dry Icy

Baseline
Dry 0.919 0.081
Icy 0.000 1.000

Table  4.  Feature  importance  for  random  forest
model.

Features Humidity
Air

Temp.
Diff.

Dew
point

Air
Temp.

Humi.
Diff.

Gini-Importance 0.372 0.300 0.160 0.119 0.048

Fig. (9). Searching process of the optimal number of trees.

Figs.  (9  and  10)  that  humidity  and  air  temperature
differences  between  consecutive  days  have  the  highest
importance.  As  seen  in  Table  5,  the  performance  of  the
model is also excellent.
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Fig. (10). Feature importance for random forest model.

Table 5. Confusion matrix of random forest model.

Classification
Prediction

Dry Icy

Baseline
Dry 0.935 0.065
Icy 0.034 0.966

Table 6. Confusion matrix of support vector machine model.

Classification
Prediction

Dry Icy

Baseline
Dry 0.887 0.113
Icy 0.034 0.966

Table 7. Model performance comparison.

Model Accuracy Precison Recall F1 Score

DNN 0.950 0.906 1.000 0.951
RF 0.950 0.933 0.966 0.949

SVM 0.925 0.889 0.966 0.926

4.4. Support Vector Machine
Similar to the RF model, there are several parameters

for model optimization in SVM as well. When training an
SVM  model,  the  performance  of  the  model  heavily
depends on the parameter settings. The main parameters

used in SVM are as follows:

4.4.1. Parameter C
C  is  a  parameter  that  adjusts  the  penalty  for

misclassification in the SVM model. As C gets smaller, the
model  allows  more  misclassification,  while  as  C  gets
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larger,  the model minimizes misclassification.  If  C is  too
large,  the  model  may  overfit,  and  if  C  is  too  small,  the
model may underfit.

4.4.2. Kernel
A function used to classify data nonlinearly in the SVM

model.  Commonly  used  functions  include  Linear,
Polynomial,  and  Radial  Basis  Function  (RBF).

4.4.3. Gamma
A  crucial  parameter  when  using  the  RBF  kernel.  As

gamma gets smaller, the decision boundary widens, and as
gamma  gets  larger,  the  decision  boundary  narrows.  If
gamma is too small, the model may underfit, and if gamma
is too large, the model may overfit.

The  optimal  parameters  were  determined  using  the
“GridSearchCV”  class  from  the  scikit-learn  library  in
Python, and the resulting values were {'C': 100, 'gamma':
'auto,'  and  'kernel':  'rbf'}.  Table  6  shows  the  results
predicted  using  the  optimal  parameters.  Although  the
performance is somewhat lower than that of DNN and RF,
the overall performance is satisfactory, with an accuracy
of over 0.9.

5. DISCUSSION
Table  7  is  a  comparison  table  for  three  different

models.  Performance  comparison  was  conductedusing
accuracy,  precision,  recall,  and  F1  score,  which,  as
expressed in Eqs. (5-8), are commonly used for evaluating
machine learning models. DNN and RF showed the same
performance  overall,  but  in  terms of  the  F1  score,  DNN
was the highest.  Since the recall  of  DNN is 100%, there
were  no  cases  of  predicting  an  icy  surface  as  a  dry
surface,  making  it  more  satisfactory  compared  to  other
models.

(5)

(6)

(7)

(8)

It should be noted that the reference data employed in
this evaluation is not the actual surface condition observed
on  the  bridges  but  rather  calculated  values  using  road
surface temperature and atmospheric data using widely-
recognized physical principles. Even if the conditions for
frost  formation  are  met  according  to  the  physical
principle, road icing may not occur in cases of high traffic
volume  [22]  due  to  heat  from  the  passing  vehicles.
Nevertheless,  the  results  of  this  study  can  be  highly
regarded  in  the  following  perspectives.  From  the
viewpoint  of  road  administrators,  if  icing  due  to  frost  is
expected, they should perform anti-icing activities (such as
patrolling  and  applying  anti-icing  chemicals).  In  this

regard, the results of this study can be usefully applied to
real-world winter road maintenance activities and driver
information systems.

CONCLUSION AND FUTURE STUDIES
Traffic  accidents  caused  by  black  ice  result  in

substantial  social  losses  annually.  In  particular,  frost-
induced  black  ice  forming  on  bridges  during  nighttime
poses  a  significant  threat  to  drivers  due  to  its  inherent
difficulty  in  discernment.  In  this  context,  this  study
explored  machine  learning-based  models  for  forecasting
frost-induced  black  ice.  Although  the  input  data  were
readily  available  atmospheric  data  (air  temperature,
relative  humidity,  dew  point,  differences  in  air
temperature,  and  relative  humidity  between  two
consecutive  days),  the  prediction  performances  were
satisfactory, with accuracies exceeding 90%. The forecast
information  was  assessed  using  baseline  data  generated
by  a  physical  principle,  with  inputs  being  pavement
temperature  data  obtained  using  an  infrared  surface
temperature  sensor  mounted  on  a  maintenance  patrol
vehicle. The main findings of the application of the three
machine learning models are as follows:

The DNN model achieved the highest F1 score of 0.951.
The  RF  model  obtained  the  second-highest  F1  score  of
0.949 with an optimal number of 11 trees.
The  SVM  model  demonstrated  the  lowest  F1  score  of
0.926 among the three models.
The  hyperparameters  of  the  RF  and  SVM  models  were
automatically optimized using the “GridSearchCV” class
from the sci-kit-learn library in Python.
Relative humidity and the difference in air temperature
between  two  consecutive  days  were  found  to  be  highly
important for black ice forecasting in the RF model.

Analyses  were  performed  to  investigate  the
characteristic  of  bridge  pavement  temperature.  As  a
result, the average bridge temperature was approximately
2°C  lower  than  the  air  temperature.  Also,  bridge
temperature  exhibited  relatively  lower  variability
compared  to  air  temperature,  possibly  due  to  the  latent
heat  of  the  concrete  structure  and  heat  from  passing
vehicles.  Furthermore,  frost-caused  black  ice  develops
only  when  the  air  temperature  is  lower  than  4°C  and
relative humidity is higher than 75%. Interestingly, frost-
induced  black  ice  is  more  likely  to  form  when  the
temperature  is  rising  rather  than  falling  under  subzero
temperature conditions.

Conventionally, black ice information can be obtained
using  expensive  road  weather  sensors.  While  installing
these  sensors  is  considered  the  best  option,  budget
constraints  often  prevent  road  managers  from acquiring
black ice information. In this regard, this study is notable
because it demonstrates that black ice information can be
obtained  without  installing  road  weather  sensors,  using
readily  available  atmospheric  data  provided  by  the
weather  agency.  However,  the  machine  learning  models
created  in  this  study  were  evaluated  solely  based  on
baseline  data  derived  from  a  physical  principle.  In  the
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future, if feasible, baseline data should be gathered from
field  observations  using  road  weather  sensors  that
accurately  measure  road  slipperiness  to  obtain  a  more
reliable result.
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