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Abstract:
With the expansion of transportation networks and the advancement of embedded and communication technologies,
research on intelligent transportation systems has gained immense interest from the research community, especially
utilizing the potential of machine learning techniques for increasing efficiency, safety, and travel experience. This
paper  presents  a  detailed  review  of  intelligent  transportation  systems  applications  using  machine  learning
techniques. Initially, 11 popular applications were selected for further study by focusing on four key areas: traffic
management, safety management, infotainment and comfort, and autonomous driving. To explore the current trends
of each application, 48 recent proposals using machine learning techniques that have gained high attention have
been selected by following some selection criteria. The selected proposals have been discussed in detail, focusing on
the  proposed  methods  and  contributions.  After  a  detailed  review,  10  potential  issues  have  been  identified  and
discussed, which could lead to the development of more efficient and optimized intelligent transportation systems
solutions. Overall, the review serves as a valuable guide for researchers in identifying the current research trends in
popular intelligent transportation systems applications using machine learning, pinpointing the gaps and developing
more attractive solutions.
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1. INTRODUCTION
In  modern  society,  transportation  systems  allow  the

movement of humans and goods from one place to another
by  various  modes,  including  road,  rail,  and  air
transportation, using different infrastructures, like roads,
rails,  and  waterways.  For  all  these  transportation  types,
the  ability  to  travel  long  distances  at  high  speed  with
comfort  and  safety  indicates  the  progression  of  modern
civilization [1]. Among all, vehicular networks by road are
considered the largest transportation systems due to their
volume,  flexibility,  scalability,  and  ubiquity.  Nowadays,

vehicular  networks  have  turned  into  Intelligent
Transportation  Systems  (ITS)  that  aim  to  integrate
different  innovative  services  to  vehicle  users  and
administrators  of  vehicle  networks  in  order  to  enhance
traffic safety and traffic efficiency, and offer various value-
added services [2].

Many ITS applications have been introduced over the
last few years to heighten the comfort, safety, efficiency,
and  functionality  of  vehicular  networks.  In  previous
studies [3, 4], ITS applications have been categorized into
i) road/traffic  safety,  ii)  traffic  efficiency,  and  iii)  other
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value-added  applications.  Another  classification  was
proposed  in  a  paper  [5]  with  respect  to  the  type  of  i)
infotainment and comfort, ii) traffic management, iii) road
safety,  and  iv)  autonomous  driving.  According  to  death
meter  information  [6],  the  estimated  road  traffic  injury-
related  death  is  the  eighth  leading  cause  of  death
worldwide.  Improving  road  safety  by  introducing  many
effective and efficient applications, such as traffic accident
risk  prediction,  and  road  anomaly  detection  is  crucial
while  ensuring traffic  flow efficiency  and offering value-
added services.

In ITS, vehicles exchange vast amounts of information
with  other  vehicles,  human  sensors,  and  infrastructures
such  as  roadside  units,  clouds,  mobile  networks,  and
satellites. Fig. (1) shows different communications in ITS.
Most ITS applications utilize this data and the potentiality
of  Machine  Learning  (ML)  to  develop  many  ITS
applications,  such  as  traffic  flow  prediction,  travel  time
prediction, and smart parking management. Utilizing 5G-

and  6G-enabled  networks  with  ML  techniques,  the  ITS
could also improve communications, safety, and decision-
making capabilities [7-9]. Over the years, researchers have
leveraged machine learning as a powerful tool to develop
and improve the effectiveness of various ITS applications.
Some researchers  have  presented  surveys  on  the  use  of
ML  and  Deep  Learning  (DL)  techniques  for  those
applications [10-15]. However, existing studies in this field
typically  concentrate  on  a  limited  range  of  applications,
including  both  outdated  and  recent  proposals  without
discriminating based on their impact, and often overlook
critical research gaps that warrant further investigation.

This  survey  considers  most  of  the  important
applications covering all application areas, reviews recent
proposals  that  have  already  gained  significant  attention
from the research community, and discusses the existing
issues as a guide for further research. Fig. (2) represents
the  methodology  that  has  been  followed  to  conduct  this
research.

Fig. (1). Different communication systems [5].

Fig. (2). Research methodology.
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The main contributions of this review are as follows: it
provides  a  comprehensive  overview  of  ML,  highlights
several  popular  ITS  applications,  explores  recent
proposals for each selected application, particularly those
leveraging ML techniques that have attracted significant
attention of the research community, and after a detailed
review,  identifies  and  thoroughly  discusses  ten  critical
issues,  suggesting  directions  for  future  research  in  the
field.

The rest of the paper is organized as follows: section 2
provides  an  overview  of  ML  with  the  basic  concepts  of
some  popular  ML  algorithms;  section  3  discusses  the
popular  applications  and provides  an overview of  recent
proposals  that  have  gained  significant  interest;  open
research  issues  are  discussed  in  section  4,  and  finally,
section 5 concludes the paper.

2. MACHINE LEARNING BACKGROUND
ML is the study of algorithms and the backbone of AI.

It  enables  machines  to  interpret  and  learn  patterns  in
data,  images,  and  sound  for  solving  real-life  problems.
Generally,  ML algorithms build  models  based on sample
training  data  for  future  prediction  and  decision-making.
Nowadays, ML application has been integrated into almost
every  sector,  including  transportation,  agriculture,
banking, bioinformatics, economics, marketing, computer
networks, telecommunications, financial market analysis,
medical  diagnosis,  and  robotics.  ML  algorithms  can
broadly  be  classified  into  four  categories:  supervised
learning, unsupervised learning, semisupervised learning,
and reinforcement learning [16, 17].

2.1. Classification of ML Algorithms

2.1.1. Supervised Learning
A  supervised  learning  algorithm  develops  a

mathematical  model  based on labeled training data.  The
training data consist of many samples, each having one or
more  inputs  and  the  desired  output.  After  training  the
model, the output for new input data that were not present
in  the  training  set  could  be  interpreted.  Supervised
learning  algorithms  are  of  two  types,  classification  and
regression. The classification algorithm generates discrete
value  outputs,  while  the  regression  algorithm  generates
continuous  value  outputs.  For  instance,  housing  price
prediction  is  a  regression  problem,  and  medical  image
processing  for  disease  prediction  is  a  classification
problem.

2.1.2. Unsupervised Learning
Unsupervised  learning  algorithms  employ  unlabeled

datasets  as  test  datasets  to  find  meaningful  correlations
and inferences between data. Cluster-based unsupervised
learning  algorithms  use  the  unlabeled  dataset  to  draw
grouping  patterns  in  the  dataset,  and  association-based
algorithms  identify  the  dependency  of  one  data  item  on
another data item. The latter is an effective algorithm to
make  a  profit,  especially  in  the  marketing  and  business
sectors. The hidden Markov model is a statistical Markov
model  that  is  assumed  to  be  a  Markov  process  X.  It  is
presumed that there exists another process Y that depends
on X where the goal is to learn X by observing Y.

Fig. (3). Classification of machine learning algorithms.
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2.1.3. Semi-supervised Learning
Semi-supervised  learning  lies  in  between  supervised

and  unsupervised  learning  that  deals  with  both  labeled
and unlabeled data. Supervised learning faces a problem
in hand labeling the data, especially when the dataset is
large.  Unsupervised  learning  algorithm  application  is
restrictive.  Semi-supervised learning techniques address
these issues by utilizing unsupervised techniques to group
the  comparative  data.  Then,  the  unlabeled  data  are
labeled using the labeled data. Semi-supervised learning
algorithms  have  been  exploited  in  various  business  and
entertainment applications [18].

2.1.4. Reinforcement Learning
Reinforcement Learning (RL) is a type of ML algorithm

that  is  concerned  with  teaching  intelligent  agents  from
experience to take suitable actions in the application area
in  order  to  maximize  the  accumulative  reward  [19].
Markov decision process generates a mathematical frame-
work  that  could  decide  cases.  The  results  are  partly
random and partly depend on the decision maker. Control
algorithms generally utilize value-based methods to inform
the agent as to which actions it should take [20]. Gaming,
driverless  cars,  recommender  systems,  and  many  other
applications  could  exploit  the  concept  of  RL.  Fig.  (3)
represents  the  detailed  classification  of  ML  algorithms.

2.1.5. Deep Learning
Deep  Learning  (DL)  is  a  branch  of  ML  that  emerges

from the concept of Neural Network (NN), where NN is a
network of neurons. A biological NN consists of biological

neurons, whereas an ANN consists of artificial neurons for
solving AI problems. NN incorporates cognitive science in
machines.  It  is  often  termed  deep  learning  as  it  uses
artificial  brain  neurons  to  solve  real-world  problems.

Fig. (4) illustrates the basic architecture of an NN with
a hidden layer [21,  22].  NN consists of  an input layer,  a
hidden  layer,  and  an  output  layer,  where  all  inputs  are
modified  by  weight  and  summed  together.  A  positive
weight reflects reward, and a negative reflects penalty. An
NN has multiple hidden layers to learn complex patterns
from  the  data,  called  DL.  Convolution  Neural  Networks
(CNN),  Recurrent  Neural  Networks  (RNN),  Long  Short-
term  Memory  (LSTM),  and  Autoencoder  (AE)  are  some
popular DL algorithms.

2.2.  Brief  Description  of  Some  Popular  ML
Algorithms

Many  types  of  ML  and  DL  algorithms  exist.  Some  of
the popular algorithms used in ITS applications are briefly
discussed below.

2.2.1. Logistic Regression
Logistic  Regression  (LR)  is  a  simple  and  efficient

supervised ML algorithm for solving various classification
and  regression  problems  [23].  Fundamentally,  LR  is  a
regression  algorithm.  It  uses  a  statistical  method  to
predict the probability (between 0 and 1) of the dependent
variable  utilizing  the  linear  combination  of  a  set  of
independent variables using logistic functions. The output
value of LR between 0 and 1 exhibits the probability of an
occurring  event.  In  LR,  when  a  decision  threshold  is
selected,  it  turns  into  a  classification  algorithm.  The

Fig. (4). Basic architecture of a neural network.
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sigmoid  function  determines  the  maximum  likelihood  to
determine the class. The LR classification could be binary
(0 or 1; yes or no), multinomial (3 or more classes without
ordering), and ordinal (3 or more classes with ordering).
The LR equation for the binary classification problem is as
follows:

(1)

Where, P is the probability of the dependent variable
(0 or 1), ‘a’ is the bias term, ‘b’ is the coefficient vector,
and X is the vector independent variable (input features).

2.2.2. Decision Tree
Decision  Tree  (DT)  [24]  is  a  simple  and  widely  used

supervised  ML  algorithm  that  can  also  be  used  for
classification and regression problems. It analyzes data in
tree-like structures that have multiple levels of nodes. The
topmost  level  is  called  the  root  node  (usually  the  best
feature),  and  the  below  levels  are  called  child  nodes.  A
node could be a parent node for its immediate below-level
nodes  and  a  child  node  for  its  immediate  upper-level
nodes.  However,  the  lowest-level  nodes  that  have  no
children are called leaf nodes. In DT, nodes represent the
decision point for data characteristics, branches represent
the possible outcome, and leaves represent the final class
or decision value for the data sample. DT is constructed by
recursively  selecting  the  attribute  with  the  highest
information gain (using entropy) and splitting the dataset
accordingly.  This  process  continues  until  reaching  leaf
nodes, where the final classification or predicted value is
assigned.  For  the  evaluation  outcome  for  a  data  sample
(consisting of some attributes), based on the values of the
respective attributes, DT branches from root to leaf nodes
for  the  decision.  In  DT,  the  obtained  results  are  easy  to
interpret.

2.2.3. Random Forest
Random  Forest  (RF)  is  also  called  an  ensemble  of

decision  trees  where  multiple  DTs  (forests)  are  used  for
predicting class (by voting) in classification problems and
values in regression (by mean) problems. RF aggregates
multiple decisions to form a single decision. Usually, more
trees offer more accuracy. In the training stage, a set of
trees  (forest)  is  created  for  the  training  dataset.  During
the  class  prediction  for  a  data  sample,  each  DT  of  the
forest  forecasts  the  class  label  for  that  sample,  and  the
majority forecast class is considered as the final decision
for  that  data  sample  with  the  expectation  of  better
accuracy  [25].

2.2.4. Support Vector Machine
Support  Vector  Machine  (SVM)  is  a  very  popular

supervised  machine  learning  algorithm  used  for
classification  and  regression  tasks.  SVM  effectively
handles high dimensional data and is very useful when the
data is not linearly separable. Thus, researchers use it in
their machine-learning tasks. Even with the advancement
of ML algorithms, SVM still continues to be one of the best

algorithms that can compete with the newer generation of
supervised  learning  algorithms.  Various  domains,
including  image  classification,  text  classification,  and
bioinformatics,  use  SVM  to  predict  the  result  [26].

2.2.5. K-Nearest Neighbor
The K-Nearest Neighbor (KNN) is another supervised

ML  algorithm  used  for  classification  and  regression
problems.  KNN works by calculating the distances (e.g.,
Euclidian  distance)  between  the  new  data  point  and  all
data  points  in  the  training  set.  Then,  for  the  reclassi-
fication  task,  new  data  points  are  assigned  to  the  most
common class among the k-nearest neighbors, and for the
regression task, the average value of k-nearest neighbors
is  calculated  and that  value  is  assigned to  the  new data
point.  KNN  basically  does  not  create  the  model,  but
memorizes the training dataset. KNN can also be used for
handling  missing  values  in  data  by  calculating  the
similarity  among  different  neighbors  [27,  28].

2.2.6. Convolutional Neural Network
Convolutional Neural Network (CNN) [29] is a DL model

mostly used to extract features from images or videos. The
images  are  represented  as  grid-like  structures,  such  as
vectors.  Its  name  came  from  its  layer,  the  convolutional
layer. This layer is used to apply filters to the input data to
detect  some  special  features  within  the  data.  Due  to  its
working nature, CNN is very effective for image processing,
object  detection,  facial  recognition,  optical  character
recognition,  and  other  computer  vision  tasks.  The  other
layers are pooling layers and fully connected layers.

2.2.7. You Only Look Once
You  Only  Look  Once  (YOLO)  [30]  is  based  on  CNN

architecture. YOLO's ability to simultaneously identify and
locate  multiple  objects  in  images  has  made  it  a  popular
choice  for  recent  research  articles.  YOLO  does  not  use  a
two-step approach like other models,  but it  uses only one
step to  perform detection.  YOLO divides the image into a
grid and predicts each grid cell. Due to its popularity and
efficiency,  many  researchers  are  actively  working  to
improve the performance of YOLO. Thus, several versions of
YOLO  can  be  found,  such  as  YOLOv1,  YOLOv2,  and
YOLOv3.  It  is  widely  used  in  real-time  object  detection
applications,  including surveillance,  autonomous vehicles,
and image analysis.

2.2.8. Recurrent Neural Network
A  Recurrent  Neural  Network  (RNN)  [31]  is  a  type  of

neural  network.  It  is  designed  for  processing  sequential
data. RNN differs from other traditional feedforward neural
networks in its recurrent loop, which works as a memory to
the model. This memory distinguishes RNN from other non-
memory-based neural networks. RNN is suitable for various
tasks,  like  sequential  data,  NLP,  speech  recognition,  and
time  series  prediction.  Apart  from  its  effectiveness,  RNN
has been reported to show some inefficiencies, as it lacks
long-term  memory.  These  limitations  motivate  further
development of other RNN-based neural networks, such as
Gated Recurrent Unit (GRU) and LSTM.

𝑃 =
1

1 + 𝑒−(𝑎+𝑏𝑋)
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2.2.9. Long Short-term Memory
Long  Short-term  Memory  (LSTM)  [31]  is  another

version  of  RNN  that  has  a  memory  cell  and  some  gates,
including input, forget, and output gates. These gates are
used to regulate the flow of information through the cell. It
is  also  used  for  determining  as  to  which  information  to
forget or which information to remember. Due to its ability
to  remember  selectively,  LSTM  is  mainly  used  in  NLP,
speech  recognition,  time  series  analysis,  etc.

2.2.10. Autoencoder
Autoencoder  is  a  popular  unsupervised  learning

technique.  It  utilizes  the  neural  network  concept  and
performs  encoding.  It  then  reconstructs  the  input  by
decoding.  For  these  tasks,  it  uses  two  components,  the
encoder  and  the  decoder  [32].  Fig.  (5)  shows  a  simple
autoencoder with six input/output neurons and three hidden
layers.  The  middle  layer  is  also  called  the  latent  layer  or
bottleneck  layer.  The  input  layer  takes  unlabeled  inputs.
The encoder trains the inputs to generate the compressed
knowledge of the input, often called “code”, which is stored
in the latent layer. On the other hand, the decoder tries to
reconstruct  the  original  input  from  that  code.  The
difference  between  the  reconstructed  input  at  the  output
layer and the original input is called loss or reconstruction
error. The network can be trained to minimize this loss.

3. REVIEW ON ML-BASED ITS APPLICATIONS
Over  the  last  few  years,  ITS  has  become  safer  and

more  efficient  and  has  added  comfort  with  the
introduction  of  different  ITS  applications.  Most  of  these
applications  utilize  the  strength  of  different  ML  and  DL
algorithms.

According  to  a  previous  work  [5],  ITS  applications
could be classified into four types: i) traffic management,
which aims to improve the management of traffic flow for

efficient transportation and offering navigation service to
drivers;  ii)  safety  management,  in  which  different
measures are taken to minimize accidents that could harm
vehicles,  drivers,  and  pedestrians;  iii)  infotainment  and
comfort,  which  focuses  on  enhancing  the  drivers'
experience by offering different value-added services; and
iv) autonomous driving, which focuses on the automation
of  vehicle  driving  without  human  engagement.  For
effective review, we have selected 11 popular applications
across four aforementioned types.

Based on the tasks performed, ITS applications could
be  classified  as  i)  perception  tasks  that  aim  to  detect,
extract,  and identify  patterns to understand and provide
services;  ii)  prediction  tasks  that  utilize  real-time  or
historical  data  to  predict  future  states;  and  iii)  manage-
ment tasks that focus on providing guidelines to vehicles/
drivers  to  achieve  different  goals,  such  as  improving
traffic flow, enhancing safety, and reducing environmental
impact  [33].  Table  1  classifies  the  selected  applications
into different types of tasks.

Many other applications also contribute to the develop-
ment  of  intelligent  and  smart  transportation  systems.
Some include smart traffic light systems, lane detection,
obstacle  warning,  traffic  sign  detection,  commercial
vehicle  administration,  public  transportation  planning,
infrastructure management, obstacle detection, blind spot
information system, etc.

To  emphasize  the  recent  trends  in  ITS  application
research using ML/DL techniques, this study has collected
related  articles  from  the  Google  Scholar  database
published over the last 5 years (from 2019) and achieved
high  attention  from  the  research  community.  A  brief
introduction  of  selected  popular  applications  and  a
detailed  overview  of  various  proposals  for  those
applications  are  presented  below.

Fig. (5). An autoencoder with one input/output layer and three hidden layers.
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Table 1. Different ITS application types along with their tasks.

SL. Application type ITS Application Tasks

1

Traffic management

Traffic flow prediction Prediction
2 Traffic congestion prediction Prediction
3 Traffic speed prediction Prediction
4 Travel time prediction Prediction
5 Traffic signal control Management
6 Smart parking management Perception
7 Automatic tolling Perception and management
8

Safety management
Traffic accident risk prediction Prediction

9 Road anomaly detection Perception
10 Infotainment and comfort Remote vehicle Diagnostic and maintenance Perception and prediction
11 Autonomous driving Autonomous driving Mixed

3.1. Traffic Management Applications

3.1.1. Traffic Flow Prediction
Traffic  flow  prediction  plays  a  crucial  role  in

estimating  the  number  of  vehicles  passing  through  a
specific  road  segment  or  region  within  a  fixed  time
interval  in  the  future  (e.g.,  10  minutes,  20  minutes).  It
contributes  to  efficient  transportation  management  and
could support other applications, like navigation services,
route planning, and traffic control. Traffic flow prediction
is  very  crucial  for  successful  ITS.  Different  ML  and  DL
algorithms are used for traffic flow prediction [10, 34-36].

In  2019,  a  hybrid  approach  using  GCN  (Graph
Convolutional Network) and LSTM model, where GCN was
used  to  determine  the  spatial  traffic  flow  relationship
between  different  stations,  was  employed  to  extract  the
temporal  features  of  traffic  flow  [37].  It  also  utilized
attention  mechanisms  for  final  traffic  flow  prediction.
Another approach to spatial-temporal feature-based traffic
flow prediction has been presented in another study [38].
The Spatio-temporal Feature Selection Algorithm (STFSA)
extracts features from actual traffic data and is then used
by CNN for short-term traffic flow prediction. LSTM and
Sparse  Autoencoder  (SAE)-based  traffic  flow  prediction
model  was  utilized  in  another  work  [39],  employing
feature  engineering  techniques,  to  extract  important
features  and  compressing  the  big  traffic  dataset  before
training  the  proposed  LSTM-SAE  hybrid  model.
Performance evaluation showed that the proposed model
could achieve an average prediction accuracy of 97.7%.

In another study [40], before applying LSTM for traffic
flow  prediction,  Chen  et  al.  first  applied  different  data
denoising  schemes  to  counter  various  unexpected
interferences that hinder accurate traffic flow prediction.
They  then  tested  their  approach  on  three  different
datasets  and  three  denoising  schemes.  Finally,  they
concluded  that  LSTM  +  EEMD  (Ensemble  Empirical
Model  Decomposition)  achieved  the  highest  accuracy.
Another article was carried out in 2021 [41] on short-term
traffic  flow  prediction  by  combining  1-dimensional  CNN
(1DCNN), LSTM, and attention mechanism, hence called
the  DCNN-LSTM  attention  model.  In  this  work,  1DCNN
was used to extract spatial features from road traffic and

supply them to LSTM as input to generate time features
and feed those as input to the regression prediction layer
for prediction result calculation. The attention mechanism
was  integrated  to  give  more  attention  to  the  important
features  and  obtain  a  better  model.  The  experiment
revealed  that  the  model  performed  better  when  giving
attention  to  the  weather  factor.

3.1.2. Traffic Congestion Prediction
Traffic  flow  prediction  and  traffic  congestion

prediction may look the same, but they are not. While the
former aims to predict the number of vehicles that would
pass  in  a  specific  area/road  segment  in  the  near  future,
the  latter  goes  a  step  further  and  aims  to  predict  the
occurrence of congestion that may slow down or gridlock
a road considering the number of vehicles, road capacity,
weather conditions, accidents, or other incidents. Traffic
congestion  prediction  focuses  on  forecasting  the  traffic
congestion conditions at the target location and time using
different statistical and ML approaches so that the driver
can make a plan for an efficient route, traffic management
can  allocate  resources  efficiently,  and  a  plan  can  be
implemented for improving transportation systems. Again,
early  prediction  of  traffic  congestion  helps  traffic
management  systems  to  take  early  action  to  avoid  or
minimize  the  impact  of  traffic  congestion  [13,  42].

Zhang et al. proposed [43] an autoencoder-based Deep
Congestion  Prediction  Network  (DCPN)  model  in  2019
that  learned  the  temporal  correlation  of  transportation
networks  using  the  created  Seattle  Area  Traffic
Congestion Status (SATCS) datasets. The model has been
found  to  outperform  the  existing  models  for  predicting
traffic  congestion.  A  backpropagation-based  traffic
congestion point prediction model [44] aimed to enhance
the  traveler's  comfort  and  make  better  transportation
decisions.  The  time  series  modeling  of  the  proposed
approach  achieved  excellent  results.

In 2020, an efficient and inexpensive data acquisition
scheme was introduced [45]. Then, a hybrid approach by
combining CNN, LSTM, and transpose CNN was proposed
to  extract  spatial  and  temporal  information  from  the
collected input images and predict traffic congestion. The
evaluation  showed  that  the  proposed  approach



8   The Open Transportation Journal, 2024, Vol. 18 Azad et al.

outperformed  two  existing  Deep  Neural  Network  (DNN)
models.  In  2021,  an  LSTM-based  traffic  congestion
prediction approach was presented [46]. It was reported
to  use  the  vehicle  speed  data  generated  from  traffic
sensors between two sites. The model also predicted the
congestion  propagation  within  the  5-minute  period  and
achieved 84-95% accuracy for different road layouts.

3.1.3. Traffic Speed Prediction
Traffic  speed  prediction  aims  to  estimate  the  traffic

speed  at  a  certain  time  utilizing  historical  and  real-time
data  collection  and  applying  different  statistical  and
machine  learning  approaches.  It  impacts  drivers'  route
planning, analyses traffic and congestion conditions on the
road, and facilitates planning by transportation planners
to improve the transportation system. For example, Google
Maps also use traffic speed prediction to estimate travel
distance and suggest routes to drivers [10, 13, 47].

For  traffic  speed  prediction,  a  work  [48]  used  an
autoencoder for spatial-temporal feature extraction from
heterogeneous data sources. The features were then fused
using  the  deep  feature  fusion  method.  Then,  the  traffic
speed  prediction  model  was  developed  using  ANN,
Support  Vector  Regression  (SVR),  regression  tree,  and
KNN.  Finally,  the  results  were  compared  and  it  was
concluded that the deep feature fusion method with SVR
achieved the best result. In 2019, an LSTM-based traffic
speed  prediction  model  was  proposed  [49],  where  road
networks  were  divided  into  critical  paths,  and  for  each
path,  multiple  bidirectional  LSTM  layers  were  stacked
together to capture spatial-temporal features fed to fully
connected  layers.  The  model  for  each  path  was  then
provided as an ensemble for traffic speed prediction over
the  network.  The  model  also  offered  interpretability
features  by  explaining  the  meaning  of  hidden  features.

Sequential  Graph  Neural  Network  (SeqGNN)  [50]
combines a sequence-to-sequence model and GNN where
road segments are considered as edges. The connectivity
between road segments  is  considered as  node,  and both
the input and output are represented as graph sequences.
The  proposed  traffic  speed  prediction  model  was  tested
using real-world datasets. Bratsas et al. [51] compared the
performance of different ML algorithms, such as RF, SVR,
Multi-level  Perceptron  (MLP),  and  Multiple  Linear
Regression (MLR), using collected road network datasets
in three different scenarios. Performance analysis showed
that under stable conditions, SVR performed the best, and
with  large  circumstance  variations,  the  MLP  model
performed best. In 2023, an urban traffic speed prediction
using  the  concepts  of  input  data  fusion  (combining  the
traffic  and  weather  dataset)  and  LSTM  was  presented
[52].  The  experiments  showed  that  the  proposed  model
using  input  data  fusion  outperformed  the  model  using
traffic  data  only.

3.1.4. Travel Time Prediction
Travel time prediction application estimates the travel

time  for  traveling  from  one  location  to  another.  The
prediction model usually uses historical data. However, it

could also consider the current traffic behavior to improve
the prediction accuracy. So, a travel time prediction model
could  be  developed  utilizing  the  traffic  speed  prediction
model  and  it  could  also  estimate  the  travel  time  using
historical  travel  time  profiles  as  well.  The  application
could improve user experience by efficiently planning the
tour and optimizing traffic flow in the traffic management
system [10, 13].

In  2019,  Ran  et  al.  [53]  found  that  existing  LSTM-
based  travel  time  prediction  models  do  not  use  the
departure time for model development. So, they proposed
a  tree-structured  LSTM-based  travel  time  prediction
model that employed the departure time by integrating the
attention mechanism concept with each output layer of the
LSTM  unit.  AdaGrad  method  was  used  to  train  the
proposed  model  using  Highways  England's  provided
dataset and the evaluation proved the effectiveness of the
proposed approach compared to existing LSTM and other
baseline  models.  Que  et  al.  [54]  proposed  a  travel  time
prediction  approach  using  the  GRU  algorithm  at  the
prediction  layer.  In  this  work,  they  divided  the  entire
trajectory into multiple segments and utilized a large-scale
real  dataset,  “Porto”,  as historical  trajectory data.  Then,
they  extracted  the  trajectory  data  for  the  spatial  road
segment  and  set  the  start  time  of  each  segment  of  the
trajectory.  The  work  also  utilized  the  velocity  feature  to
represent  the  adjacent  segment  structures  and  road
network  topology.  Performance  analysis  proved  the
proposed  method  to  have  a  Mean  Absolute  Percentage
Error (MAPE) of only 0.070% and perform well compared
to the existing methods, like Stacked Autoencoder (SAE)-
based approach.

Petersen et al. introduced a bus travel time prediction
model  using  convolutional  LSTM  [55].  They  utilized  the
non-static  spatial-temporal  correlation  in  the  urban  bus
network,  and  experiments  were  performed  using
Copenhagen’s public transport dataset, Movia, having 1.2
million travel time observations.  The performance of the
proposed  approach  was  compared  with  the  baseline
model,  including  the  Google  traffic  model  for  different
times  of  day.  In  2020,  He et  al.  introduced an  approach
[56] for bus travel time prediction. The method consisted
of  training  and  prediction  stages.  In  the  training  stage,
bus  lines  were  portioned  into  segments,  and  for  each
segment,  travel  time  patterns  were  extracted  from real-
world bus travel data that involved 30 bus services. After
that,  the  data  for  each  segment  was  considered  as  a
cluster, and for each cluster, the LSTM model was trained
to  calculate  the  bus  riding  time.  Then,  the  time  of  each
segment (between a source to destination) was predicted
and combined with the waiting time (using historical bus
arrival  timing  records)  to  estimate  the  bus  travel  time.
However,  the  approach  could  be  further  improved  by
implementing a model to predict the waiting time as well.
A multistage integrated feature learning-based approach
using  deep  learning  for  travel  time  prediction  was  also
studied  [57].  It  incorporated  external  weather  and  the
fastest route data for extensive feature engineering, and
K-means  algorithms  were  applied  to  boost  the  feature
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space.  Moreover,  a  deep-stacked  autoencoder  technique
was utilized to represent features in a lower dimension to
decrease  overfitting  and  increase  performance.  Then,  a
deep MLP was trained to predict travel time. The findings
demonstrated that the model outperformed with a Mean
Absolute Error (MAE) of approximately 200 seconds and
showed the capability to capture general traffic dynamics,
although it may fail under significant rare events, such as
heavy snow.

3.1.5. Traffic Signal Control
Traffic signal control, also called traffic light control,

directs to optimize the traffic flow at intersections so that
the vehicle has to stay short of time at the intersections.
Traffic  signal  control  applications  could  be  pre-timed  or
actuated, where the pre-timed traffic signal control could
use a fixed timing plan and actuated signal control could
use  real-time  sensor  data  to  adjust  the  timing  plan  with
the  cost  of  complexity.  Proper  implementation  of  traffic
signal control could contribute to safe and efficient traffic
flow, while minimizing congestion [10].

In 2019, Genders and Razavi [58] proposed an N-step
asynchronous Q-learning algorithm with two hidden layer
ANN reinforcement learning approaches for the agent to
develop  an  adaptive  traffic  signal  control.  The  effective-
ness of agent performance was tested using the developed
dynamic  and  stochastic  rush  hour  simulation  and  it  was
proven that the proposed approach performed better than
linear  Q-learning,  and  the  traditional  loop  detector
actuated traffic signal control method with the reduction
of  mean  total  delay  by  40%.  However,  compared  to  the
traditional  actuated  approach,  the  proposed  technique
exhibited  some  extra  delays  for  left-turning  vehicles.  A
fully  scalable  and  robust  decentralized  Multi-agent  RL
(MARL) approach using Advantage Actor Critic (A2C) was
proposed  [59]  to  overcome  the  scalability  issue  of
centralized  RL  for  adaptive  traffic  signal  control.  The
effectiveness of the proposed approach was improved by
reducing  the  local  agents'  learning  difficulty  and
increasing observability. Performance analysis performed
using  both  synthetic  traffic  grid  and  real  word  traffic
network  of  Monaco  city  proved  the  effectiveness  of  the
approach  against  both  independent  Q-learning  and
Advantage  Actor  Critic  (A2C)  approach.

In 2020,  Joo et al.  [60]  presented a Q-learning-based
Traffic  Signal  Control  (TSC)  system  to  maximize  the
number  of  vehicles  crossing  the  intersection  by
considering  the  standard  deviation  of  queue  length  and
throughput as the main parameters. Performance analysis
in a 4-way intersection proved that the proposed method
encountered shorter queue length and waiting time than
other Q-learning-based TSC systems. The strength of the
work  was  that  it  could  adapt  to  different  intersection
structures. However, it could improve further by sharing
information among nearby intersections instead of  using
information from one intersection. A value-based meta RL
approach  named  MetaLight  has  also  been  presented
earlier  [61].  It  eliminated  the  need  for  learning  from
scratch that most existing approaches demand, and hence

sped up the learning process in new scenarios by utilizing
the learned knowledge from existing scenarios. Moreover,
the proposed approach improved the performance of the
existing RL model FRAP by optimizing the model structure
and  improving  the  updating  scheme.  The  proposed
approach  used  four  real-world  datasets  to  prove  its
effectiveness  in  quick  adaptation  in  new  scenarios  with
consistent performance.

A deep RL-based traffic signal control system for large-
scale  networks  to  overcome  the  problem  of  multi-
intersection traffic signal control was proposed by Chen et
al. in 2020 [62]. The work tackled existing challenges, like
scalability  and  signal  coordination.  The  model  proposed
was  evaluated  in  a  large-scale  real-world  scenario  with
2510 traffic lights in Manhattan, New York City. However,
the performance could be further improved by adopting a
more appropriate design of coordination and cooperation
among neighboring intersections.

3.1.6. Smart Parking Management
Finding a parking spot in many locations is a tedious

and  time-consuming  task.  Smart  parking  management
systems contribute to the development of smart cities. The
application allows vehicle users to find free parking spots
effectively  and  optimize  parking  space  usage.  It  also
allows  users  to  reserve  the  available  parking  spot  in
advance, which saves the available parking spot searching
time  and  car  emissions.  In  addition,  the  system  also
contributes  to  minimizing  drivers'  stress,  fuel  consump-
tion,  and  delay,  while  finding  a  parking  space  and
improving  road  traffic  conditions  as  well  [11,  14,  63].

In  2020,  Saharan  et  al.  proposed  an  ML-based
approach [64] to predict parking occupancy in Seattle city
using  street  parking  data.  The  occupancy-driven  ML
approach  was  utilized  to  predict  the  parking  pricing  for
the  next  vehicles.  It  benefits  both  the  parking  authority
and  those  parking  based  on  the  parking  demands.  In  a
high occupancy situation, it favors parking owners, and in
a  low  occupancy  scenario,  it  favors  the  individuals
parking.  The  model  has  been  tested  using  four  ML
algorithms, including Linear (LIN), DT, NN, and RF, where
RF has been found to perform best with 99.01% accuracy.
Ali  et  al.  proposed  a  smart  parking  prediction  system
using a deep LSTM algorithm and integrated the concepts
of IoT, cloud computing, and sensor networks [65]. They
implemented  the  model  using  the  Birmingham  parking
sensors  dataset.  Three  experiments  were  performed
considering the location,  days of  the week,  and hours of
the day, proving its effectiveness compared to the state-of-
the-art methods.

Awan  et  al.  [66]  performed  a  comparative  study  on
parking  space  availability  prediction  using  different
ML/DL  algorithms,  like  MLP,  KNN,  DT,  RF,  and
Santanders' parking dataset. The model could recommend
the  top  K  parking  spots  to  those  parking  based  on  the
distance  between the  cars'  current  position  and  parking
spots. After performance analysis, they concluded simple
algorithms, like DT, RF, and KNN, to outperform complex
algorithms, like MLP, for prediction accuracy.
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In  2022,  the  Car  Parking  Space  Prediction  (CPSP)
scheme was introduced [67] using Deep Extreme Learning
Machine  (DELM)  techniques.  The  proposed  approach
achieved the highest precision rate of 91.25%. However, it
only achieved 60% training and 40% testing and validation
accuracy. Another car parking space prediction approach
was presented in another study [68]. Here, the prediction
model was optimized by integrating the concept of IoT and
an  ensemble-based  prediction  model.  The  Birmingham
parking dataset was used to test the model, and Bagging
Regression  (BR)  was  used  as  the  base  model  for  the
ensemble  approach.  Performance  evaluation  showed the
proposed scheme to have only 0.06% Mean Absolute Error
(MAE)  and  outperform  the  existing  approach  by  over
6.6%,  but  with  less  complexity.

3.1.7. Automatic Tolling
Automatic  tolling  applications  allow  vehicle  users  to

pay the toll electronically. It is also called the Electronic
Toll Collection (ETC) system. In ETC, drivers could pay the
toll  without stopping at  the toll  collection point,  such as
toll  roads,  bridges,  and  tunnels,  but  the  vehicles  are
charged  by  being  identified  using  Radio-Frequency
Identification  (RFID)  tags  or  license  plate  recognition
techniques. The application has been found to contribute
to reducing congestion and cost,  while  increasing safety
and efficiency [69].

In  2019,  a  Multitask  License  Plate  detection  and
Recognition (MTLPR) approach using CNN with the aim of
better  accuracy  and  less  computational  complexity  was
proposed  [70].  The  approach  was  tested  on  the  Chinese
City  Parking  Dataset  (CCPD);  it  initially  detected  the
license plate and then recognized the information on the
license  plate  using  Convolutional  Recurrent  Neural
Network  (CRNN)  and  Connectionist  Temporal  Classifi-
cation  (CTC)-based  models.  The  experiment  results
showed  that  the  lightweight  model  outperformed  other
methods in terms of detection and recognition speed and
achieved up to 98% precision.

Tourani  et  al.  presented  an  automated  and  robust
model for Iranian license plate detection and recognition
techniques using the YOLOv3 technique [71]. The method
involved  License  Plate  Detection  (LPD)  and  Character
Recognition  (CR),  serving  as  a  unified  application  to  be
implemented in real  time with high accuracy.  For model
development and testing, image data (including both color
and  grayscale  images)  were  collected  from the  installed
surveillance  system  for  different  distances,  shooting
angles,  brightness,  and  resolutions.  The  experiment
results  showed  that  the  model  could  achieve  95.05%
accuracy and perform the task within 119.73 milliseconds,
proving its effectiveness for real-world applications.

In  2021,  a  study  involved  the  development  of  an
Automatic Number Plate Recognition (ANPR) system using
DL  techniques  [72].  The  system  was  trained  using  the
YOLO  object  detection  algorithm  and  the  ImageAI
framework  to  optimize  and  improve  the  efficiency  of
ANPR.  It  consisted  of  vehicle  detection,  license  plate
localization, and character recognition. It has been trained

using NVIDIA Jetson Nano kit and Python software for car
detection  using  the  Stanford  car  dataset.  Then,  number
plate localization and optical character recognition were
performed. The result analysis showed that the proposed
DL model achieved an accuracy of 98.5% for car detection,
97% for number plate localization, and 96.7% for optical
character  recognition.  However,  in  bright  illuminated
environments,  the  YOLO  object  detection  algorithm
performed  poorly  than  the  ImageAI  framework.

In  2021,  Laroca  et  al.  [73]  proposed  an  Automatic
License  Plate  Recognition  (ALPR)  system  using  YOLO-
based  CNN  models  at  all  stages  using  eight  publicly
available datasets from five different regions of the world,
reflecting  its  robustness  in  various  conditions.  They
manually  performed  annotation  by  labeling  38351
bounding boxes on 6239 images for the vehicle's position,
License  Plates  (LPs),  and  characters  across  all  datasets
where  the  annotation  was  missing.  The  approach
consisted  of  stages,  like  vehicle  detection,  LP  detection
and layout classification, and LP recognition. For the LP
detection  and  layout  classification  stage,  a  unified
approach  by  combining  LP  detection  and  layout
classification  was  used.  The  integration  of  layout
classifications,  such  as  American,  Brazilian,  and
Taiwanese,  significantly  improved  the  LP  recognition
results. It achieved an average end-to-end LP recognition
accuracy  of  96.9%  by  considering  eight  public  datasets
from five different regions under various conditions that
performed better than most existing works. The approach
performed  better  than  commercial  systems  using  four
datasets,  and  the  results  were  comparable  for  other
datasets. The approach achieved an impressive number of
frames  processing  per  second  even  if  there  were  four
vehicles in a frame, proving its ability to perform well in
real-time  applications.  Table  2  summarizes  the  popular
traffic management application proposals.

3.2. Safety Management Applications

3.2.1. Traffic Accident Risk Prediction
In 2023, about 1.26 million people died of road injuries

worldwide [6]. The traffic accident risk prediction model
estimates  the  likelihood  of  traffic  accidents  that  could
happen  in  different  road  segments  and  times.  Such
prediction is  essential  for taking preventive measures to
minimize  the  risk  and  save  lives.  The  prediction  system
can notify  about  the  risk  to  the  drivers  so  that  they  can
concentrate on the road, avoid mistakes, and minimize the
risk of accidents [34].

Theofilatos  et  al.  performed  a  study  in  2019  [74]  to
compare the performance of ML and DL-based approaches
for  real-time  crash  occurrence  prediction  in  different
weather conditions. For the experiment, they chose KNN,
NB, DT, and SVM for the ML model, and shallow NN (with
1 layer), and DNN (with 4 layers) for the DL model. The
prediction  models  were  developed  using  traffic  and
weather  data  (generated  from  the  Attica  Tollway  in
Greece). The performance of the models was compared in
terms  of  prediction  accuracy,  sensitivity  (true  positive
rate), specificity (true negative rate), and AUC. Among all
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models,  NB  and  DT  achieved  the  highest  accuracy
(72.15%),  but  their  achieved  sensitivity  score  was  low
(between 0.225 and 0.324). Considering the scores of all
metrics,  the  DNN model  outperformed the  other  models
with  an  accuracy  of  68.95%,  sensitivity  of  0.521,
specificity of 0.77, and AUC of 0.641. The study revealed
the potentiality of DNN for traffic accident risk prediction.

In  2020,  Shi  et  al.  [75]  presented  a  model  for
Autonomous  Vehicles  (AVs)  risk  prediction  with  the
addition  of  behavior  assessment  utilizing  the  end-to-end
Automated ML (AutoML) method. The AutoML framework
integrates three main components, like unsupervised risk
identification, feature learning (using XGBoost), and model
auto-tuning  (by  Bayesian  optimization).  The  proposed
AutoML  approach  could  distinguish  safe-risk  conditions

with 95% accuracy. Overall,  the study has demonstrated
the effectiveness of AutoML for AV risk prediction. A Rear-
end  Collision  Prediction  Mechanism  (RCPM)  was
introduced by Wang et al. [76]. The model used the CNN
and  Next  Generation  Simulation  (NGSIM)  trajectory
dataset  for  model  development  to  predict  the  rear-end
collisions  in  real-time.  The  class  imbalance  issue  of  the
dataset was handled by genetic theory-based approaches.
The  proposed  model’s  performance  was  compared  to
Honda,  Berkeley,  and  MLP  NN-based  algorithms.  It
outperformed the existing models for accuracy, precision,
recall, and ROC. Performance analysis proved that RCPM
could provide early warning of rear-end collisions with less
than 0.1 s average prediction delay, making it suitable for
real-time applications.

Table 2. An overview of traffic management ITS applications.

Ref. Year Algorithm Contributions Application

[37] 2019 GCN, LSTM A hybrid approach combining GCN and LSTM with an attention mechanism to accurately predict
traffic flow by considering both spatial and temporal features.

Traffic flow
prediction

[38] 2019 CNN An STFSA-CNN model, where STFSA extracts spatio-temporal features from actual traffic data and
CNN realizes short-term traffic flow prediction.

[39] 2020 LSTM, SAE LSTM and SAE-based traffic flow prediction models achieved an average prediction accuracy of 97.7%.

[40] 2021 LSTM Applying EEMD for data denoising before using LSTM for traffic flow prediction achieved the highest
accuracy across the three datasets.

[41] 2021 CNN, LSTM
A combination of 1D CNN, LSTM, and an attention mechanism to extract spatial and temporal features
for short-term traffic flow prediction achieved improved performance when considering weather
factors.

[43] 2019 Autoencoder A novel AE-based DCPN model trained on a custom SATCS dataset achieved superior performance
compared to existing models.

Traffic
congestion
prediction

[44] 2019 Backpropagation A backpropagation-based traffic congestion point prediction model with time series modeling
demonstrated excellent performance.

[45] 2020 CNN, LSTM An efficient data scheme with a hybrid CNN-LSTM-Transpose CNN model outperformed DNNs for
traffic congestion prediction by exploiting spatial and temporal information from images.

[46] 2021 LSTM
An LSTM-based model that utilized traffic sensor data to predict congestion propagation within 5
minutes with 84-95% accuracy for diverse road layouts demonstrated the effectiveness on different
road types.

[48] 2019
Autoencoder, ANN,

SVR, Regression Tree,
KNN

An autoencoder combined with deep feature fusion and SVR outperformed ANN, regression tree, and
KNN for traffic speed prediction using heterogeneous data sources.

Traffic speed
prediction

[49] 2019 LSTM An interpretable LSTM model predicted traffic speed over a network by capturing spatial-temporal
features for each critical path and interpreting hidden features.

[50] 2020 GNN Leveraged GNNs and sequence-to-sequence learning to predict traffic speed by representing road
segments as edges and connectivity as nodes, achieving effectiveness on real-world data.

[51] 2020 RF, SVR, MLP, MLR Compared RF, SVR, MLP, and MLR for traffic speed prediction reveal SVR's dominance in stable
conditions and MLP's superiority under high variability.

[52] 2023 LSTM Combining traffic and weather data via input data fusion and LSTM for urban traffic speed prediction
proves more accurate than using traffic data alone.

[53] 2019 LSTM
Addressed the limitation of existing LSTM models for travel time prediction and improved by
incorporating departure time through a tree structure with an attention mechanism, achieving
superior performance.

Travel Time
Prediction

[54] 2019 GRU Leveraged GRU with trajectory segmenting and feature extraction to achieve low MAPE (0.070%) for
travel time prediction, outperforming SAE-based approaches.

[55] 2019 Conv-LSTM Bus travel time prediction model utilizing non-static spatial-temporal correlation in an urban bus
network that outperformed existing models, including Google traffic model in different times of day.

[56] 2020 LSTM Predicts bus journey travel time by combining segment-based LSTM models and historical arrival
times, but could further improve by predicting waiting time.

[57] 2020 AE, Deep MLP Combining extensive feature engineering and DL, the multistage approach achieves high travel time
prediction accuracy (MAE 200 seconds) but struggles under rare events like heavy snow.
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Ref. Year Algorithm Contributions Application

[58] 2019 Q-learning Utilizing n-step Q-learning achieved a 40% reduction in total delay compared to traditional traffic
signal control methods, but the delay is slightly high for left-turning vehicles.

Traffic Signal
Control

[59] 2019 A2C A fully scalable, robust MARL approach using A2C overcomes the scalability issue of centralized RL for
adaptive traffic signal control, outperforming independent Q-learning and A2C approaches.

[60] 2020 Q-learning Aims to maximize the number of vehicles passing in intersections. It is flexible to different intersection
structures.

[61] 2020 Meta RL Eliminates the need for scratch learning in new scenarios by leveraging knowledge from existing
scenarios, improving performance and adaptation speed compared to existing RL models like FRAP.

[62] 2020 Deep RL A deep RL-based traffic signal control system for large-scale networks, tackling scalability and
coordination challenges, but leaving room for improved interintersection cooperation.

[64] 2020 LIN, DT, NN, RF Predict parking occupancy and dynamically adjust parking prices based on demand, achieving 99.01%
accuracy using RF.

Smart Parking
Management

[65] 2020 LSTM
Employs deep LSTM, IoT, cloud computing, and sensor networks for parking space availability
prediction using Birmingham parking sensor data, achieving accurate results based on location, day of
the week, and time of day.

[66] 2020 MLP, KNN, DT, RF,
Ensemble

Analyzed the performance of different ML/DL models for parking space availability prediction and
revealed that shallow algorithms DT, RF, and KNN performed better. It can also recommend the top k
available parking spaces.

[67] 2022 DELM A CPSP scheme using DELM achieves high precision (91.25%) but suffers from low training (60%) and
testing/validation (40%) accuracy.

[68] 2022 BR An ensemble prediction approach with IoT integration achieves low MAE (0.06%) for parking space
prediction, outperforming existing methods by 6.6% while remaining simpler.

[70] 2019 CRNN, CTC A lightweight MTLPR approach using CNN, achieving high accuracy (98%) and outperforming other
methods in detection and recognition speed.

Automatic
Tolling

[71] 2020 YOLOv3 An automated YOLOv3-based approach for Iranian LP detection and recognition, achieves 95.05%
accuracy and real-time performance (119.73ms), proving the effectiveness for real-time applications.

[72] 2021 YOLO DL-based ANPR system achieves 97% car, 98% plate, and 90% character recognition, showcasing the
potential for traffic management.

[73] 2021 YOLOv3 YOLO-based ALPR system, achieved >95% recognition rate, surpassing commercial systems and
excelling with fixed LP layouts like Brazil and China with 2.1% and 3.6% average improvements.

Huang  et  al.  [77]  proposed  a  crash  detection,
prediction, and crash risk estimation approach using CNN
techniques.  They  utilized  real-world  volume,  speed,  and
sensor  occupancy  datasets.  For  crash  detection,  CNN
outperformed shallow ML models, like LR, DT, RF, SVM,
and  KNN.  However,  for  crash  prediction,  CNN  perfor-
mance  was  found  to  be  comparable  to  the  shallow
algorithms. For crash risk estimation, they used 1-minute,
5-minute, and 10-minute prior data of the crash incident
and observed it as hard to estimate the crash risk with 10-
minute prior data.

3.2.2. Road Anomaly Detection
Road  anomalies,  like  bumps,  potholes,  and  cracks,

could  lead  to  serious  consequences,  such  as  vehicle
damage, delay, traffic congestion, and even accidents. So,
detecting such anomalies and notifying the drivers could
contribute  to  avoiding  such  potential  damage.  Road
anomaly detection application meets the requirement by
monitoring  the  road  surface  condition  and  notifying  the
drivers  when  such  anomaly  is  detected.  However,  road
anomaly detection often becomes challenging due to the
different and random shapes of potholes, cracks, etc [11,
14, 78].

Basavaraju  et  al.  [79]  proposed  an  ML  approach  to
assess road surface anomalies using smartphone sensors
in  2019.  The  authors  analyzed  different  supervised
machine  learning  techniques,  including  SVM,  DT,  and
MLP,  to  classify  road  surface  conditions  using  accelero-
meters,  gyroscopes,  and GPS data collected from smart-

phones.  They  compared  the  performance  of  models
trained with features from all three axes of the sensors to
models  that  have  used  features  from  only  one  axis.  The
model trained with data from all three axes outperformed
the model trained with data from only one axis. To classify
the road surface conditions, the authors also applied deep
NN (MLP) with and without manual feature extraction that
could also classify road conditions effectively. Finally, the
proposed  model  could  monitor  the  road  condition  for
defect  classification,  present  the  risk  factors  to
commuters,  and  inform  the  respective  authorities  for
maintenance.  Varona  et  al.  introduced  a  DL-based
approach  for  road  surface  monitoring  and  pothole
detection  [80].  They  discussed  the  impact  of  road
anomalies on vehicle maintenance and driver safety. Data
segmentation  and  augmentation  play  a  crucial  role  in
increasing  the  model  accuracy.  The  proposed  approach
has utilized different DL algorithms, like CNN, LSTM, and
reservoir  computing,  to  identify  various  road  surfaces
automatically and distinguish different potholes. Overall,
CNN performed best for stability event identification and
road surface classification. In the experiment, real-world
information about routine travels in Tandil, Argentina, was
used.

In  2021,  Aboah  et  al.  [81]  proposed  a  vision-based
traffic  anomaly  detection  system using  DL  (YOLOV5)  and
DT. In this approach, YOLOV5 served as the backbone for
the  detection  model.  It  extracted  candidate  anomalies  by
video sorting and analyzing traffic camera videos through
different steps, like background estimation, road mask

(Table 2) contd.....
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Table 3. A review on safety management in ITS applications.

Ref. Year Algorithm Contributions Application

[74] 2019 KNN, NB, DT, RF,
SVM, DNN

For real-time crash prediction, ML and DL models were compared using the Attica Tollway in Greece
dataset. DL model outperformed all, achieving 68.95% accuracy, 0.521 sensitivity, 0.77 specificity, and
0.641 AUC.

Traffic accident
risk prediction

[75] 2020 XGBoost The autoML-based method achieved 91.7% accuracy for risk level prediction and 95% for safe-risk
distinction.

[76] 2020 CNN
CNN-based RCPM was employed for real-time rear-end collision prediction, outperforming existing
algorithms in accuracy and recall. Using synthetic oversampling to address data imbalance, RCPM
delivered early warnings with <0.1s delay, making it suitable for real-time ITS.

[77] 2020 CNN, LR, DT, RF,
SVM, KNN

The CNN-based approach was employed for crash detection, prediction, and risk estimation. While CNN
outperformed shallow models for detection, its prediction performance was comparable. Predicting
crash risk with 10-minute prior data was difficult, but using 1-minute and 5-minute data showed
promise.

[79] 2019 SVM, DT, MLP ML approach using smartphone sensors achieved superior performance with features from all axes of
the accelerometer, gyroscope, and GPS data compared to using single axes.

Road anomaly
detection

[80] 2020 CNN, LSTM CNN-based methods were used to classify different road surfaces and distinguish potholes with
promising accuracy, highlighting the importance of data augmentation and segmentation.

[81] 2021 YOLOv5, DT The model achieved promising traffic anomaly detection with an F1 score of 0.8571 and S4 score of
0.568, but struggled with distant anomalies and small objects.

[82] 2021 Dilated CNN
A dilated CNN network was employed for smart pothole detection, which surpassed traditional CNNs in
accuracy and computation cost, offering better resolution, training results, and reduced false
positives/negatives.

generation,  and  adaptive  thresholding.  After  that,
candidate  anomalies  were  passed  through  DT  to  detect
and analyze the anomalies. The model could also estimate
the start and end times of the anomalies. It achieved an F1
score of 0.8571 and an S4 score of 0.5686, indicating its
effectiveness  in  finding  anomalies  in  most  videos.
However,  the  approach  could  detect  anomalies  near  the
camera  easily,  but  struggled  to  detect  them in  locations
being  far  from  the  camera  or  objects  being  too  small.
Later,  a  combination  of  conditions  was  simulated,  and
robust algorithms and an IOU tracker were employed to
increase  annotation  database  with  long-distance  objects
and  increase  the  detection  accuracy  for  distance
anomalies  from  the  camera.

A work [82] employed a dilated CNN for smart pothole
detection.  The  traditional  CNN  algorithms  convolved  and
pooled the image to increase the receptive field and reduce
computation,  but  caused  a  loss  of  resolution.  Later,  a
combination  of  the  proposed  MVGG16  network  removed
some  convolution  layer  of  VGG16  and  served  as  the
backbone  for  faster  RCNN  using  pothole  images.  It
provided  better  precision  and  low  inference  time.  The
proposed  model  outperformed  the  existing  CNN-based
YoLoV5 models using the ResNet101 backbone and it was
able to balance between the pothole detection accuracy and
detection speed. A summary of works focusing on the safety

management of ITS applications is presented in Table 3.

3.3. Infotainment and Comfort

3.3.1. Remote Vehicle Diagnostic and Maintenance
Remote vehicle diagnosis focuses on detecting provable

vehicle failure or future issues of different subsystems, like
fuel, exhaust, cooling, and ignition, by sending sensor data
from  the  vehicle  to  the  server,  processing  the  data  to
predict  or  identify  faults,  and  sending  notifications  to
drivers  for  vehicle  maintenance.  It  also  tried  to  fix  the
issues  without  requiring  the  vehicle  to  go  to  the  repair
shop.  It  contributed  to  avoiding  frequent  maintenance  by
diagnosing and fixing the faults early [83, 84]. In this way,
the application contributed to infotainment and comfort by
enhancing the overall driving experience, convenience, and
peace of mind for vehicle owners.

In 2020, Gong et al. [85] proposed the implementation
of  ML-based  fault  classification  of  in-vehicle  Power
Transmission  Systems  (VPTS).  The  experiment  covered
different  ML  algorithms,  like  DT,  SVM,  KNN,  MLP,  and
DNN.  To  improve  the  efficiency  of  the  ML  algorithms,
dimensionality reduction was utilized using PCA. For the
experiment,  a  variety  of  fault  signals  under  15  fault
conditions  were collected.  Mel-scale  Frequency Cepstral
Coefficient (MFCC) was used to extract the original signal
characteristics from the collected signals. Then, a variety

Table 4. An overview of infotainment and comfort ITS applications.

Ref. Year Algorithm Contributions Application

[85] 2020 DT, SVM, KNN, MLP,
DNN

ML-based approach for VPTS fault diagnosis and classification. PCA-based dimension
reduction improved the efficiency of MFCC for extracting signal characteristics. The model
proved its effectiveness for VPTS fault diagnosis. Remote vehicle

detection and
maintenance

[86] 2022 LR, RF, XGB, CatBoost,
GNN, RoBERTa

Combining transformer pretraining with GNNs achieved superior accuracy in CIoV
software escalation prediction, showcasing the effectiveness of DL and graph modeling
integration.
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of  fault  characteristics  were  used  with  different  ML
algorithms  to  automatically  diagnose  the  faults  and
classify  them.  Experiments  were  implemented  using
Matlab  and  Python.  Overall,  SVM,  MLP,  and  DNN
performed  best  in  the  Python  environment.

In  2022,  an  approach  called  Software  Escalation
Prediction (SEP) was proposed [86] that aimed to predict
software escalation in the Cognitive IoV (CIoV) using DL
techniques. The model combined pretraining mechanisms
of  transformers  with  software  upgrade-related  events  to
dynamically  model  software  sequence  activities.  It  also
used  Graph  Neural  Networks  (GNNs).  The  GNN  could
capture  the  complex  life  activity  rule  of  software  and
integrate  the  characteristics  of  the  software.  For  the
experiment, a software activity log dataset was used, and
the  proposed  SEP  performance  was  compared  with  LR,
RF, XGBoost, Catboost, GNN, and RoBERTa. The proposed
SEP outperformed all models, including RoBERTa methods
with  a  6-8%  improvement.  Some  effective  solutions  for
infotainment and comfort ITS applications are presented
in Table 4.

3.4. Autonomous Driving
Autonomous driving or self-driving is the advancement

of  ITS  and  it  has  the  potential  to  revolutionize
transportation  systems.  Autonomous  driving  aims  to
improve safe and effective automatic driving by analyzing
the  environment  and  making  effective  decisions  and
control  strategies.  The  main  challenge  of  autonomous
driving is to detect and interpret the surroundings, such
as  pedestrians,  other  vehicles,  road  signs,  traffic  lights,
and road conditions, and take action accordingly. It uses a
combination  of  different  technologies,  including  ML,  AI,
sensors, cameras, and radar, making it able to move from
one  location  to  another  safely  considering  the
surroundings without or with limited human involvement
[11, 13, 87, 88].

In 2019 [89], an automated lane-changing approach for
making  high-level  decisions  in  dynamic  and  uncertain
traffic  scenarios  was  presented.  For  the  experiment,  a
simulation environment was created by emulating various
challenges, such as uncertainty in driver’s behaviors, and
considering the trade-off between safety and agility. The
deep  RL-based  agent  performed  significantly  better
compared to a heuristic-based safe lane change algorithm
called  MOBIL.  It  also  contributed  to  minimizing  the
estimated  arrival  time.  Overall,  the  proposed  approach
performed consistently in a variety of uncertain and noisy
traffic environments.

Wei  et  al.  [90]  introduced  an  improvised  version  of
CNN-based  visual  object  detection  in  Advanced  Driving
Assistance Systems (ADAS) using deconvolution and fusion
of  CNN  feature  maps  at  the  first  stage  to  handle  large
object  scale  variations.  Then,  soft  Non-maximal
Suppression (NMS) was applied to address the challenge
of object occlusion. Finally, the authors set anchor boxes
based on aspect ratio statistics for better object matching

and localization. Experiments performed using the KITTI
dataset  demonstrated  the  effectiveness  of  the  proposed
approach, with good detection performance improvement
over  the  baseline  MS-CNN  model.  Chen  et  al.  [91]
designed a specific input representation using a bird-view
image to reduce the complexity of the problem and used
visual encoding to capture low-dimensional latent states.
They implemented it to

capture  low-dimensional  latent  states.  They
implemented  three  state-of-the-art  model-free  deep  RL
algorithms (DDQN, TD3, and SAC) in their framework and
applied them to a challenging roundabout task in a driving
simulator.  The  results  showed  their  method  to  be
significantly  better  than  the  baseline  approach  in  both
scenarios,  without  and with  dense  surrounding  vehicles.
Overall,  the  SAC  algorithm  exhibited  the  best  perfor-
mance,  achieving  high  success  rates  in  entering  and
passing  through  the  roundabout.

In  2020,  an  intelligent  path  planning  scheme  for
autonomous  vehicle  platoons  using  deep  reinforcement
learning  on  the  network  edge  was  proposed  [92]  to
improve  the  driving  efficiency  and  fuel  consumption  of
autonomous vehicular platoons. First, a system model was
developed  for  the  platoon,  and  then  a  joint  optimization
problem was formulated considering the task deadline and
fuel consumption. A path determination strategy was then
designed  using  deep  reinforcement  learning.  The
evaluation  of  the  proposed  greedy  algorithm  combined
with the Q-learning approach through simulation showed
that the proposed approach could significantly reduce the
fuel  consumption  of  the  vehicle  platoon,  while  ensuring
the  task  deadlines.  However,  further  research  needs  to
evaluate  the  approach  in  an  unknown  dynamic
environment.

Autonomous  braking  is  very  crucial  for  autonomous
vehicles.  Fu  et  al.  presented  [93]  a  deep  RL-based
autonomous braking approach through the selection of a
precise  decision-making  strategy  for  ensuring  driving
safety in an emergency.  The proposed approach focused
on three factors: i) effectively learning the driving strategy
through  detailed  analysis  of  lane  changing  and  braking
process,  ii)  determining  the  optimal  strategy  for  auto-
nomous  braking  by  analyzing  different  brake  moments,
degree of accidents, and passengers' comfort using deep
RL,  and  iii)  improving  the  efficiency  of  the  optimal
strategy; for continuous control tasks, Deterministic Policy
Gradient (DDPG), an Actor-critic (AC) algorithm, has been
reported  to  be  utilized.  Through  simulations,  the
effectiveness  of  the  proposed  autonomous  braking
decision-making  strategy  was  analyzed  and  validated  in
terms of learning effectiveness, decision-making accuracy,
and  driving  safety.  Table  5  summarizes  the  different
proposals  for  autonomous  driving  applications.

4. OPEN RESEARCH ISSUES
There  exist  a  number  of  issues  that  need  further

research for effective solutions. Some important ones are
discussed below.
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Table 5. An overview of autonomous driving applications.

Ref. Year Algorithm Contributions Application

[89] 2019 Deep RL A deep RL-based approach performed significantly better in noisy highway environments compared to
heuristic methods, making safe lane changes while minimizing the estimated time of arrival.

Autonomous
driving

[90] 2019 CNN
The approach improved CNN-based object detection for ADAS with 1) deconvolution and feature fusion for
large object scales, 2) soft non-maximal suppression for occlusion, and 3) aspect ratio-based anchor boxes,
achieving performance gains over baseline MS-CNN on the KITTI dataset.

[91] 2019 DDQN, TD3, SAC A bird's-eye view input with visual encoding for roundabout navigation in driving simulators achieved
superior performance with the SAC algorithm compared to baseline, even in dense traffic.

[92] 2020 Deep RL Deep RL-based path planning for autonomous vehicle platoons reduced fuel consumption.

[93] 2020 DDPG This approach employed a multiobjective reward function and DDPG algorithm, leading to improved driving
safety and effective and accurate decision-making in emergency situations.

4.1. Lack of Publicly Available Benchmark Datasets
Most existing works rely on simulated traffic datasets

and small  road segments of  an area or city often impact
ML  models'  performance  as  it  might  not  work  well  for
different roads or areas. Moreover, models trained using
synthetic  datasets  often  perform  poorly  in  real  environ-
ments.  So,  more  focus  is  needed  to  create  publicly
available  datasets  covering  various  traffic  scenarios  in
diverse  geographic  locations.

4.2. Integration of Multimodal Data
Real-world  traffic  is  highly  correlated  with  various

factors,  like  social  media,  weather  information,  traffic
sensors, etc. A few existing works have utilized data from
different  sources  limiting  the  model  to  understanding
actual traffic dynamics. Heterogeneous data fusion could
contribute  to  the  performance  improvement  of  ITS
applications.

4.3. Adaptive Learning Algorithm
Most  existing  models  use  historical  and  fixed  data

having a lack of flexibility to adapt to changing situations,
like road closure,  accidents,  or  sudden weather changes
that  would  not  perform  satisfactorily  in  changing
situations.  Developing adaptive algorithms by incorpora-
ting  real-time  traffic  data  with  changing  situations  for
better  performance  is  crucial.  Exploring  online  learning
techniques  to  update  the  model  with  new  data  could
contribute  to  this  area.

4.4. Privacy-preserving Data Sharing
Since traffic data could usually contain sensitive user

information that often hinders data collection and effective
model  development,  proper  privacy-preserving  data
collection  and  processing  methods,  like  homomorphic
encryption  and  differential  privacy,  need  to  be  incorpo-
rated to ensure privacy-preserved data sharing.

4.5. Multimodal Travel Prediction
In  real  traffic  scenarios,  various  modes  of

transportation, like buses, cars, and trucks, co-exist, and
their interactions are evident. Existing applications mainly
consider  single  vehicles,  like  cars  or  buses,  that  fail  to
capture  the  actual  traffic  scenarios  and  could  lead  to
improper traffic management suggestions and inaccurate
predictions, especially in urban areas.

4.6. Model Scalability and Generalization
Existing models  often exhibit  promising performance

in selected scenarios with used datasets, but they may not
work well in diverse scenarios with various data. So, more
potential  research  could  be  performed  on  developing
scalable  and generalized models  using data from a wide
range of scenarios.

4.7. Model Robustness and Resilience
Existing proposals have mainly focused on training and

testing  for  a  specific  scenario  and  with  specific  datasets,
but  they  have  not  been  tested  extensively  in  different
challenging events and unexpected scenarios to prove their
robustness  and  resilience.  Data  augmentation  and
adversarial testing could contribute to robust and resilient
model development.

4.8. Real-time Implementation
For  several  applications,  including  traffic  congestion

prediction,  traffic  signal  control,  and  traffic  accident  risk
prediction,  real-time  prediction  is  crucial.  However,  most
proposals  do  not  analyze  the  latency  and  computational
requirements,  which  must  be  evaluated  to  ensure  their
effectiveness  in  providing  real-time  services.  Utilizing
efficient ML algorithms and optimized model architecture
could contribute to this situation.

4.9. Cooperation among Applications
More  effective,  efficient,  and  intelligent  applications

could  develop  by  cooperation  and  data  sharing  among
different  applications.  For  example,  traffic  flow,  traffic
congestion,  and  travel  time  prediction  applications  could
cooperate,  and  traffic  accident  risk  prediction  and  road
anomaly  detection  could  cooperate  to  develop  better
solutions.  Further  research  on  multimodel  and  ensemble
learning  could  enhance  the  effect  of  cooperation  among
different applications.

4.10. Interpretability and Explainability
In  general,  ML models  are  like  black boxes that  often

make  it  difficult  to  realize  how  the  output  is  generated.
Interpretability and explainability of the ML model for ITS
applications  are  crucial  to  increase  the  trust  and
transparency of the model's outcome. They also contribute
to  detecting  the  model's  bias  and  errors  that  could  allow
developers  to  address  and  improve  the  model's  perfor-
mance  further.
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CONCLUSION
This paper has presented how ITS application research

has been revolutionized by leveraging the effectiveness of
ML and DL algorithms.  It  has  first  identified 11 popular
ITS  applications  across  four  areas:  traffic  management,
safety  management,  infotainment  and  comfort,  and
autonomous driving. Then, for each ITS application, recent
ML-based  potential  proposals  have  been  analyzed  that
have gained high attention from the research community.
Reviewing  the  high-impact  articles  has  revealed  the
significant  potential  and  impact  of  the  DL  algorithm  for
effective solutions. For some applications, hybrid models
have  exhibited  superior  performance  by  effectively
extracting spatial and temporal features. However, due to
the lack of publicly available benchmark datasets, most of
the  models  have  been  trained  and  tested  using  datasets
collected from a specific region or city, and it is uncertain
whether  these  models  have  performed  expectedly  for
other locations. After a detailed review, the discussion of
some open issues has been accommodated that  requires
further  research  for  improved  predictive  capabilities,
decision making,  and optimized operational  efficient  ITS
solutions.

Finally,  the  review has  offered  valuable  insights  into
tracking recent  trends in  ITS application research using
ML  and  DL  algorithms.  The  open  research  issues  have
provided directions for future research and development
of more efficient, safe, and user-friendly ITS applications
using ML techniques that could reshape future mobility.
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