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Abstract:
Background:  Travel  time  prediction  is  fundamentally  important  in  advanced  traveler  information  systems.
Particularly, in the Dedicated Short-Range Communications (DSRC) traffic information system targeted by this study,
travel  times  are  obtained  after  vehicles  terminate  trips  on  the  route,  indicating  that  a  time-lag  phenomenon  is
inevitable. Therefore, travel time prediction is even more emphasized in DSRC systems. With advances in artificial
intelligence technologies, many new machine learning algorithms have recently been introduced.

Methods: In this study, three machine learning algorithms-k-Nearest Neighbor (k-NN), Long Short-Term Memory
(LSTM), and Transformer were applied to predict travel times collected on a DSRC-equipped national highway. Travel
time outliers  caused by entry  and exit  maneuvers  at  intersections  were filtered using a  robust  outlier  treatment
algorithm.

Results: From applying the prediction algorithms, errors of 12.4%, 11.7%, and 10.3% were revealed for k-NN, LSTM,
and Transformer, respectively. To identify the statistical significance of the differences in prediction performance,
paired  t-tests  were  performed.  Consequently,  all  the  differences  between  the  algorithms  were  proven  to  be
statistically significant. The differences in performance were found to be generally more significant under congested
conditions compared to uncongested conditions.

Conclusion: The enhanced reliability of real-time travel time information can increase the effectiveness of DSRC
traffic information systems by encouraging drivers to divert from congested routes or adjust their trip schedules to
less congested periods.
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1. INTRODUCTION
The  Advanced  Traveler  Information  System  (ATIS)

offers road users real-time travel time/speed information
[1]. Drivers who receive this information can help mitigate
road congestion by avoiding congested areas or adjusting
their  departure  times.  Even  in  the  absence  of  detour
routes, drivers informed about upcoming traffic conditions

can better estimate their arrival times at the destination,
thereby minimizing losses associated with schedule delays
[2].

The detection system for ATIS is broadly divided into
two types: point detection systems and section detection
systems.  Point  detectors  collect  traffic  flow  data  from  a
specific point on the road to calculate the travel time for a
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section, while section detectors measure the actual time it
takes for  a vehicle to traverse a section.  Point  detectors
offer  the  advantage  of  real-time  information,  but  errors
may occur when estimating section travel time based on
point  speeds.  Section  detectors,  on  the  other  hand,
capture the actual travel time experienced by the vehicle,
but since the information is collected based on the arrival
time, it inevitably results in a time delay. To mitigate this
time delay issue, the application of appropriate prediction
techniques  is  essential  [3].  This  study  proposes  a
methodology  for  predicting  travel  time  using  data
collected  from  Dedicated  Short-Range  Communications
(DSRC) probes on a signalized suburban arterial. DSRC is
a representative section detection system in Korea, which
collects section travel time by utilizing the identification
(ID)  numbers  of  vehicles  equipped  with  DSRC
transponders. As of 2021, 270 DSRC receivers have been
installed on suburban highways [4].

There  have  been  numerous  studies  on  travel  time
prediction,  but  with  recent  advancements  in  Artificial
Intelligence  (AI)  technology,  new  algorithms  have
emerged.  Initially  designed  for  fields  such  as  image
recognition  and  natural  language  processing,  these  AI
algorithms are now being applied to a wide range of areas,
including weather forecasting and stock market analysis.
In  this  study,  we  predict  travel  time  using  both  the
traditionally  employed  machine  learning  algorithm,  k-
Nearest Neighbor (k-NN), and more recently developed AI
algorithms, such as Long Short-Term Memory (LSTM) and
Transformer.  We  then  compared  and  analyzed  the
performance of these algorithms. The section analyzed in
this study currently employs the k-NN algorithm for travel
time forecasting. However, to improve the reliability of the
predicted travel times, newly developed AI algorithms are
being  considered.  Therefore,  the  results  of  this  study,
which compare and analyze the current algorithm (k-NN)
with newer algorithms (LSTM, Transformer), can serve as
valuable reference material for system enhancement.

2. PREVIOUS STUDIES
Traditionally, k-NN models have been widely employed

for travel time prediction. Kim et al. predicted travel time
for  the  section  between  Anseong  JC  and  Osan  IC  using
freeway  DSRC  data.  They  employed  a  k-NN  model  and
random  numbers  for  the  prediction,  achieving  an  error
rate of 4%, demonstrating excellent results. When random
numbers were excluded from the historical data pattern,
the error rate rose to 18.98%, indicating that the pattern
database  is  a  critical  factor  for  prediction  accuracy  [5].
Lim  et  al.  also  used  DSRC  data  from  national  highways
and the k-NN algorithm to predict travel times [6]. Han et
al.  conducted a study to evaluate the reliability of travel
times between toll booths using DSRC data collected from
highways  [7].  Jang  et  al.  developed  a  k-NN  model  to
predict fire truck travel times to ensure fire suppression
within the golden time during fire incidents. They used 17
independent variables in their analysis and confirmed that
fire  truck  travel  times  varied  depending  on  land  use
patterns [8]. Lee et al. proposed a route-based travel time

prediction  methodology  for  freeways  to  overcome  the
limitations  of  existing  link-based  prediction  methods.
Using  a  machine  learning-based  self-organizing  map
clustering algorithm, and they found that the route-based
travel  time  prediction  reduced  errors  compared  to  the
traditional  k-NN  model,  particularly  noting  a  significant
reduction  in  travel  time  errors  on  the  Jungbunaeryuk
Expressway section of the Seoul-Daegu route [9]. Finally,
Park  et  al.  conducted  a  study  on  DSRC  travel  time
prediction, addressing the time lag that inevitably occurs
when data is collected based on the arrival time. Applying
the k-NN algorithm to DSRC data collected from National
Highways, they found that the error rate for the analyzed
sections ranged from 1.0% to 14.0% [10].

Recently,  newly  developed  AI  algorithms  have  been
garnering much attention for travel time prediction. Duan
et al. applied the LSTM methodology to predict travel time
using  data  collected  from  highways  in  the  UK.  The
prediction results  showed an average error rate of  7.0%
[11]. Zhang et al. proposed an LSTM-based seq2seq model
for  short-term  travel  time  prediction  and  demonstrated
superior performance compared to existing methods [12].
Ho  et  al.  proposed  a  machine  learning-based  prediction
methodology  using  travel  time data  collected  in  Taiwan.
The  model  predicted  travel  time  for  one  hour  ahead  to
enhance  user  utility,  and  the  hybrid  model  employed
XGBoost and a fully connected network. The application of
the developed model demonstrated superior performance
in travel time prediction compared to existing models [13].
Liu et al. predicted bus travel times using vehicle location
data  collected  from  buses  to  forecast  urban  bus  arrival
times. The prediction methodology applied a Kalman filter-
LSTM model. Since the number of buses is relatively small
compared to regular vehicles, the Kalman filter was used
to  remove  noise  in  individual  bus  travel  times,  and  the
LSTM  model  was  applied  for  prediction.  The  results
showed that  the  developed model  outperformed existing
models [14]. Qiu et al. utilized the random forest algorithm
to forecast  freeway travel  times based on data  gathered
from  probe  vehicles.  The  effectiveness  of  the  proposed
prediction methods was rigorously  assessed through the
calculation  of  mean  absolute  percentage  errors.  These
errors  were  computed  across  various  observation
segments,  with  the  prediction  horizons  varying  between
15 and 60 minutes [15].

Several  studies  have  explored  the  use  of  machine
learning algorithms to predict bus arrival times. Petersen
et  al.  employed an  LSTM network  to  forecast  bus  travel
times  using  data  from  Copenhagen.  Their  model,  which
incorporated  spatiotemporal  correlation  analysis,
demonstrated  a  marked  improvement  in  prediction
accuracy  over  traditional  methods  [16].  Comi  et  al.
investigated  bus  travel  time  series  using  seasonal  and
trend decomposition with Loess, revealing the importance
of designing timetables based on the time of day and day
of  the  week,  consistent  with  findings  from  other  global
cities [17]. Chen et al. introduced a Bayesian probabilistic
model  for  predicting  bus  travel  times  and  estimated
arrivals,  showing  that  this  approach  outperformed
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baseline  models  by  better  accounting  for  bus-to-bus
interactions in both predictive averages and distributions
[18].

As  reviewed,  numerous studies  have been conducted
on  travel  time  prediction  to  address  the  time  lag
phenomenon  in  section  detection  systems  and  provide
valuable  information  for  users  making  route  choices.  In
Korea, traditional statistical and machine learning models
have  predominantly  been  employed.  Consequently,  this
study  carried  out  travel  time  predictions  using  both  the
conventional  machine  learning  algorithm  (k-NN)  and
recently  developed  models  (LSTM  and  Transformer),
followed  by  comprehensive  analyses  of  their
performances.

3. METHOD

3.1. k-nearest Neighbor
The k-NN algorithm is  a  machine learning technique

that  has  traditionally  been  widely  used  for  travel  time
prediction. It predicts travel time by selecting the k past
travel times that exhibit the most similar patterns to the
current  collected  travel  time  and  averaging  them.  The
steps  of  the  algorithm  are  as  follows  [19].

1.  k  value  determination:  Decide  the  number  of
neighbors  (k)  from  the  historical  travel  times  that  have
similar patterns to the current travel time.

2. Distance calculation: The distance used to search for
the  number  of  neighbors  with  patterns  similar  to  the
current  travel  time  among  the  historical  travel  times  is
typically the Euclidean distance (Eq. 1).

(1)

where  d(p,  q)  =  distance  between  p  (present  travel
time) and q (historical travel time)

3. k neighbors search: Search for the k neighbors from
the  historical  travel  times  that  are  most  similar  to  the
current travel time.

4.  Travel  time  prediction:  Predict  travel  time  by
averaging  the  k  neighbors.

The k-NN algorithm is widely used due to its simplicity
and  strong  predictive  performance,  as  evidenced  by  its
frequent application in numerous studies. However, one of
its  key  limitations  is  the  high  computational  load,  as  it
requires searching for k neighbors in the historical travel
time database each time new travel time data is collected,
resulting in reduced real-time efficiency.

3.2. Long Short-term Memory
LSTM,  a  type  of  Recurrent  Neural  Network  (RNN),

addresses  the  vanishing  gradient  problem,  which  is  a
limitation  of  traditional  RNN  models,  and  demonstrates
excellent  performance in  time series  data  prediction.  By
integrating memory cells  and gating mechanisms,  LSTM
controls the flow of  information in long-term time series
data,  minimizing  the  effects  of  memory  loss.  The  LSTM
network  consists  of  a  structure  with  three  gates:  forget
gate, input gate, and output gate [20].

1.  Forget  gate  (ft):  The  gate  that  determines  the
forgetting  rate  of  the  previous  cell  state  (Eq.  2).

(2)

where σ = activation function, Wf = weight matrix for
the forget gate, ht-1  = hidden state of previous step, xt  =
input at time t, and bf = error term of the forget gate

2.  Input  gate  (it):  The  gate  that  determines  the  new
information to be added to the current cell. The similarity
between  input  data  is  calculated  using  the  Euclidean
distance  (Eq.  1).

3. Output gate (ot): The gate that controls the output of
the cell state (Eq. 3).

(3)

where Wo = weight matrix for the output gate and bo =
error term of the output gate.

3.3. Transformer
The  transformer  algorithm,  first  introduced  in  2017,

serves  as  the  foundation  for  large  natural  language
processing  models.  It  is  highly  effective  in  processing
long-term data, and more recently, it has been applied in
building  time  series  prediction  models  in  various  fields,
such  as  weather  forecasting  and  stock  market  analysis.
Transformers use the attention mechanism (Eqs. 4 and 5)
to  analyze  the  correlation  between  the  input  (Encoder)
and  output  (Decoder),  which  has  been  shown  to
outperform traditional models in terms of concurrency and
learning efficiency [21].

(4)

where  X  =  input  matrix,  Q  =  query,  K  =  key,  V  =
value, and WQ . WK . WV = learned weight mateix.

(5)

where dk = magnitude of key (index) vector and KT =
transpose matrix of K.

Since the Transformer does not perform recurrent or
convolutional operations, the order of the time series data
must  be  encoded.  This  is  achieved  by  using  sine  and
cosine  functions,  as  shown  in  Eqs.  (6  and  7),  to  input
positional  (order)  information.  By  employing  sine  and
cosine  functions,  the  position  of  the  data  can  be  set
continuously  and  smoothly.

(6)

(7)

where pos = position (order)  of  time series data,  i  =
dimension of positional encoding, and dmodel = dimension of
positional encoding.

𝑑(𝑝, 𝑞) = √∑ (𝑝𝑖 − 𝑞𝑖)2𝑛
𝑖=1

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) 

𝑄 = 𝑋𝑊𝑄, 𝐾 = 𝑋𝑊𝐾, 𝑉 = 𝑋𝑊𝑉 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉  

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛 (
𝑝𝑜𝑠

100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
)  

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠 (
𝑝𝑜𝑠

100002𝑖/𝑑𝑚𝑜𝑑𝑒𝑙
)  
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4. DATA

4.1. Experiment Section
The travel  time data  were  collected  using  two DSRC

receivers installed on National Highway 38 in Pyeongtaek
City  in  Korea.  As  shown  in  Fig.  (1),  the  data  collection
section  covers  4  kilometers  and  contains  a  total  of  six
signalized  intersections.  Although  the  speed  limit  is  80
km/h,  due  to  the  dense  placement  of  traffic  signals,  the
average speed during non-congestion periods was around

50  to  60  km/h.  The  Pyeongtaek  Industrial  Complex  is
located  near  this  section,  leading  to  congestion  during
weekday  morning  rush  hours.  No  congestion  occurs  on
weekends  when  there  is  no  commuting  traffic,  so  data
collection  was  conducted  on  weekdays  in  January  2013,
when  morning  congestion  was  observed.  Since  travel
times remain relatively consistent throughout the day on
congestion-free weekends, predictive algorithms were not
applied, and weekend data were excluded from collection
and analysis (Fig. 2).

Fig. (1). Study section.

Fig. (2). Outlier removal process.

A (start) B (end)

Data collection (Start)

Data aggregation 
(5 min interval based on time B)

Data matching

Calculation of median 
(Mt) of ln(travel times)

Calculation of Median of MD

Calculation of upper limit:
median + (zm, 99.9% * MD)

Calculation of lower limit:
median - (zm, 99.9% * MD)

Is ln(travel time) within
the upper and lower limits?

Valid data
Yes

Outlier

No

Calculation of
Average of exp(ln(travel times))

End
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Fig. (3). Probe travel times: (a) raw data and (b) outlier-filtered data.

4.2. Outlier Treatment
The  target  section  exhibits  the  characteristics  of  a

typical  interrupted  facility.  Due  to  significant  traffic
inflows  and  outflows  at  intersections,  shops,  and  gas
stations  within  the  section,  a  large  number  of  outliers

were collected, as shown in Fig. (3a). These outliers were
processed  using  an  algorithm  developed  for  outlier
removal,  as described in Eqs.  (8-11).  The distribution of
individual  travel  times,  with  the  outliers  removed,  is
shown  in  Fig.  (3b).
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(8)

(9)

(10)

(11)

where
N = number of travel times,
TAB(t)  =  average  of  valid  travel  times  from A  to  B  at

time t,
SAB(t) = set of valid travel times from A to B at time t,
tA(B),i(j,k)(t) = detection time of vehicle i (j, or m) at point

A or B,
tw = aggregation interval (5 min), and
zm  =  z-score  (4.45)  at  99.9%  confidence  interval  for

median.
The outlier filtering algorithm removes aberrant data

that fall outside the calculated confidence interval, which
is determined based on the median within an aggregation
interval (Eqs. 9-11). Subsequently, an average travel time
is  computed  using  the  filtered  data  (Eq.  1).  The
algorithm's novelty lies in its use of the median and log-
normal distribution, specifically tailored to the travel time

characteristics of signalized arterials, as demonstrated in
a  previous  study  [22],  where  travel  times  were  found  to
follow a log-normal distribution. Additionally, the modified
z-score  (z-score  /  0.6745)  was  used  to  adjust  the
confidence interval for the median [23]. The step-by-step
process of the filtering algorithm is depicted in Fig. (2).

4.3. Filtered Travel Time Data
The  distribution  of  filtered  travel  times  in  5-minute

aggregation intervals  is  presented in  Fig.  (4).  Recurrent
congestion occurred between 8:00 and 8:30 AM. Although
increases in travel  time were observed in the afternoon,
they  were  relatively  modest  compared  to  the  morning
peak periods.  The total  number of  data points  for  the 5-
minute aggregation interval was 5,181, with data collected
over  approximately  18  days.  As  shown  in  Table  1,  the
average travel time for the study section was 283 seconds,
with a standard deviation of  106 seconds,  a minimum of
130  seconds,  and  a  maximum  of  1,193  seconds.  The
maximum travel  time was nearly  five  times the average,
indicating significant congestion during the morning peak
hours.

5. TRAVEL TIME PREDICTION
A total  of  5,181 travel  time data  points  were divided

into training (70%) and testing (30%) sets. Z-score scaling
was applied to expedite convergence and improve model
performance. Travel time predictions were set 30 minutes
ahead, considering that morning congestion typically lasts
for approximately 30 minutes. Although the prediction

Fig. (4). Filtered travel time data in 5-minute intervals.

Table 1. Data description.

Statistic Travel Time (sec)

Count 5,181
Mean 283

Standard deviation 106
Minimum 130
Maximum 1,193

,  
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intervals  varied  from  10  to  60  minutes,  no  significant
differences in predictive performance were observed. The
LSTM  and  Transformer  networks  were  developed  using
the TensorFlow Keras framework.

5.1. k-nearest Neighbor
The k-NN algorithm predicts travel time by searching

for k historical travel time patterns similar to the current
travel  time  pattern  and  calculating  their  average.

Therefore, determining the optimal k value that maximizes
prediction performance is crucial. Fig. (5) illustrates the
process of identifying the optimal k value. After exploring
k  values  from  1  to  100,  the  best  performance  was
observed at k = 11. In this study, the travel time patterns
used  for  the  optimal  k  value  search  were  based  on  30-
minute  intervals  (6  travel  time  values  in  5-minute
aggregation  intervals).

Fig. (5). k-NN performance by number of k value.

Fig. (6). Comparison of actual and predicted travel time (k-NN).

Table 2. k-NN algorithm parameters.

Parameter Search Grid Optimal

Number of neighbors [1 – 100] 11
Distance metric [Manhattan, Euclidean, Minkowski] Euclidean
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When searching for the optimal k value, the similarity
between  historical  travel  time  patterns  is  typically
assessed  using  distance  metrics  such  as  Manhattan,
Euclidean,  and  Minkowski  distances.  In  this  study,
Euclidean  distance,  which  demonstrated  the  best
prediction  performance  among  the  three  metrics,  as
shown  in  Table  2,  was  used  as  the  similarity  evaluation
metric.  A  review  of  previous  studies  in  Chapter  2  also
revealed that Euclidean distance was the most commonly
used metric.

Fig. (6) illustrates the distribution of predicted travel
times  compared  to  the  actual  travel  time  distribution.
Overall,  the  predicted  travel  times  exhibited  a  pattern
similar  to  the  actual  travel  times;  however,  during  the
morning peak hours, the predicted travel times were lower
than the actual values. Given the importance of accurate
travel  time  information  during  periods  of  severe
congestion,  this  result  is  somewhat  unsatisfactory.

5.2. Long Short-term Memory
LSTM is a recurrent neural network model specialized

for  time-series  data  prediction,  where  the  setting  of  the
time-series data cycle is critical. In this study, considering
that travel times exhibit daily periodicity, the cycle was set
to 288 (5-minute aggregation intervals * 24 hours). Since

vehicle traffic is closely related to human activity patterns,
it  is  considered  reasonable  to  set  the  cycle  on  a  daily
basis.

The  optimal  parameters  of  the  LSTM  model  were
obtained using the grid search methodology proposed by
Abbasimehr et al. [24], as shown in Table 3. Mean Square
Error  (MSE)  was  employed  as  the  loss  function,  and
Adaptive  Moment  Estimation  (Adam)  as  the  optimizer.
While the number of epochs was set to 100 with an early
stopping callback (patience of 5), the model was optimized
at  the  69th  epoch.  It  was  observed  that  increasing  the
number  of  hidden  nodes  beyond  128  resulted  in
overfitting,  leading  to  a  decline  in  model  performance.

Fig.  (7)  illustrates  the  learning  process  of  the
developed LSTM model. As the model was optimized at the
69th  epoch,  the  horizontal  axis  is  displayed  up  to  69
epochs. It can be observed that the rate of error reduction
significantly  decreases  after  the  20th  epoch.  Fig.  (8)
shows  the  distribution  of  predicted  versus  actual  travel
times.  While  the  prediction  performance  during  peak
hours,  a  known  limitation  of  the  k-NN  algorithm,  was
satisfactory, the discrepancy between predicted and actual
travel  times  during  non-peak  hours  was  relatively  large,
highlighting the need for further investigation into more
effective prediction models.

Table 3. LSTM algorithm parameters.

Parameter Search Grid Optimal

Number of hidden node [64, 128, 256] 128
Activation function [Sigmoid, Tanh] Tanh (hyperbolic tangent)

Window size [144, 288, 576] 288 (24 hours)

Fig. (7). Learning process (LSTM).
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Fig. (8). Comparison of actual and predicted travel time (LSTM).

Fig. (9). Learning process (transformer).

Table 4. Transformer algorithm parameters.

Parameter Optimal

head_size 256
num_heads, ff_dim, num_transformer_blocks 4

mlp_units 128
mlp_dropout 0.2

dropout 0.1

5.3. Transformer
The Transformer model was developed to address the

limitations  of  the  LSTM  model  and  therefore,  shares
similar characteristics.  Accordingly,  the cycle was set to
288,  as  with  the  LSTM  model.  The  Transformer
parameters were optimized using the weight initialization
methodology proposed by Huang et al.  [25], as shown in

Table  4.  The  loss  function,  optimizer,  batch  size,  and
epochs were set the same as in the LSTM algorithm, and
the model was optimized at the 22nd epoch.

Fig. (9) shows the learning process of the constructed
Transformer model. Since the model was optimized at the
22nd  epoch,  the  horizontal  axis  is  displayed  up  to  22
epochs.  Unlike  the LSTM model,  the  Transformer model
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shows  a  sharp  reduction  in  the  error  rate  after  just  3
epochs.  Fig.  (10)  demonstrates  the  distribution  of
predicted versus  actual travel times. Compared to the k-
NN and LSTM models,  the Transformer model  exhibited
superior  performance  during  both  peak  and  non-peak
hours.

6. RESULTS & DISCUSSION
To  quantitatively  evaluate  the  performance  of  the

developed  models,  Mean  Absolute  Error  (MAE),  Root
Mean Square Error (RMSE), and Mean Absolute Percent
Error (MAPE) were used as evaluation metrics, as shown
in Eqs. (12-14). MAE is the average of the absolute errors
and is easy to interpret, while RMSE always has a larger
value  than  MAE  since  it  is  calculated  by  dividing  the
square  of  the  errors.  According  to  Hodson  [26],  MAE  is
advantageous  when  errors  follow  a  normal  distribution,
whereas  RMSE  is  more  suitable  when  errors  follow  a
Laplace distribution. Due to the distinct characteristics of
these  metrics,  it  is  common  practice  to  use  both  in  the
evaluation of regression models. MAPE expresses MAE as
a  percentage,  making  it  easier  for  users  to  intuitively
understand.

(12)

(13)

(14)

where y = observed value,  = predicted value, and n
= number of sample.

As  shown  in  Table  5,  the  Transformer  model
outperformed  all  others  across  all  evaluation  metrics,
followed by the LSTM model. The k-NN model, which was
primarily  used  for  travel  time  prediction  before  the
development of deep learning models, showed the lowest
performance across all metrics. However, the performance
difference was not substantial, ranging between 1 to 2%.
To  test  the  statistical  significance  of  these  performance
differences, a paired t-test was conducted. As indicated in
Table  6,  the  p-values  for  the  performance  differences
between  the  three  models  exhibited  lower  than  0.05,
proving that the performance differences are statistically

Fig. (10). Comparison of actual and predicted travel time (transformer).

Table 5. Prediction performance.

Algorithm k-NN LSTM Transformer

MAE (sec) 31.8 29.3 27.6
RMSE (sec) 41.2 38.0 37.3
MAPE (%) 12.4 11.7 10.3

Table 6. Paired t-test of MAPE.

Statistic k-NN LSTM LSTM Transformer k-NN Transformer

Mean 12.4 11.7 11.7 10.3 12.4 10.3
Variance 95.2 117.9 117.9 83.7 95.2 83.7
t-value 2.53 3.18 5.26

p-value (one-sided) 0.0058 0.0007 8.59E-8
Number of sample 1137
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significant at a 95% confidence level. For brevity, only the
MAPE results of the t-test are reported, but similar results
were observed for the other two metrics.

To conduct a detailed performance analysis, the results
were  classified  based  on  traffic  flow  conditions.  A
threshold of 300 seconds was chosen, considering the flow
conditions of  the experimental  section.  Table  7  presents
the t-test analysis for cases exceeding 300 seconds, while
Table 8 shows the analysis for cases equal to or less than
300  seconds,  and  Fig.  (11)  illustrates  the  MAPE

differences between the two traffic conditions. Overall, the
performance  differences  were  more  pronounced  during
congestion compared to non-congested periods. Although
the performance gap between the LSTM and Transformer
models was slightly larger during non-congested periods,
the  difference  was  not  substantial  compared  to  other
cases.  This  likely  stems  from  the  increased  LSTM  error
rates  during off-peak hours,  as  previously  mentioned.  In
all cases, except for the performance difference between
k-NN  and  LSTM  during  non-congested  periods,  the
performance  differences  were  statistically  significant.

Table 7. Paired t-test of MAPE (travel time > 300 sec).

Statistic k-NN LSTM LSTM Transformer k-NN Transformer

Mean 12.0 10.5 10.5 9.3 12.0 9.3
Variance 101.4 88.0 88.0 51.9 101.4 51.9
t-value 3.39 2.06 4.45

p-value (one-sided) 0.0004 0.02 5.52E-6
Number of sample 388

Table 8. Paired t-test of MAPE (travel time ≤ 300 sec).

Statistic k-NN LSTM LSTM Transformer k-NN Transformer

Mean 12.5 12.2 12.2 10.8 12.5 10.8
Variance 92.1 132.6 132.6 99.6 92.1 99.6
t-value 0.87 2.51 3.42

p-value (one-sided) 0.19 0.006 0.0003
Number of sample 749

Fig. (11). Performance differences between models based on flow conditions.
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CONCLUSION AND FUTURE STUDIES
The reliability of real-time travel time information is a

crucial factor in evaluating the effectiveness of Advanced
Traveler  Information  Systems  (ATIS).  Over  the  past  30
years,  numerous  studies  have  focused  on  ensuring  the
reliability of travel time data. In section detection systems
such  as  DSRC,  generating  predicted  travel  time
information  to  mitigate  time delay  effects  is  particularly
important.  In  this  study,  we  utilized  the  LSTM  and
Transformer algorithms, both known for their strengths in
time-series data prediction and their emergence alongside
advances in AI technologies, to predict travel times on a
signalized suburban arterial. For comparison, the current
method  (k-NN  algorithm)  was  also  applied.  Due  to  the
nature of signalized arterials, characterized by interrupted
traffic  flow  and  numerous  outliers  from  intersection
entries  and  exits,  a  previously  developed  DSRC  outlier
removal  algorithm  was  used  to  effectively  filter  the
aberrant  data.

The data used for prediction was collected in January
2013  on  weekdays  using  a  pair  of  DSRC  transponders
installed  at  4  km  spacing.  The  study  section  is  located
near the Pyeongtaek industrial complex, where recurring
congestion  occurs  between  8:00  and  8:30  AM  on
weekdays.  During  congestion,  travel  times  increased  by
approximately  five  times  compared  to  non-congested
periods.  Consequently,  this  section  was  identified  as  a
critical  area  for  providing  travel  time  predictions  to
encourage the use of alternative routes or adjustments in
departure times.

The  application  of  the  prediction  algorithms  showed
that the Transformer algorithm performed the best in all
cases.  The  k-NN  algorithm  underestimated  travel  times
during  peak  hours,  while  the  LSTM  algorithm  exhibited
increased  errors  during  the  early  morning  hours  when
traffic  volume  was  the  lowest.  The  prediction  errors  for
each  model  were  12.4%,  11.7%,  and  10.3%  for  k-NN,
LSTM,  and  Transformer,  respectively.  A  statistical
significance test on the prediction errors revealed that, at
a  95%  confidence  level,  the  performance  differences
between  the  models  were  significant.

An  analysis  of  performance  differences  by  traffic
conditions indicated that the differences between models
were  generally  more  pronounced  during  congested
periods  than  during  non-congested  periods.  Given  that
travel  time  prediction  is  particularly  crucial  during
congestion,  it  is  considered that  applying the LSTM and
Transformer  algorithms  is  more  advantageous  than  the
conventional k-NN algorithm.

This  study  analyzed  the  predictive  performance  of
various  algorithms  using  data  collected  over
approximately one month. To ensure the generalizability
and applicability of the results, further research should be
conducted  on  segments  that  exhibit  more  diverse  traffic
patterns.
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