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Abstract:
Introduction: The study presents an analysis of the emissions data from an LPG-fueled vehicle, focusing on key
exhaust  components.  CO2,  THC,  and  NOx.  Data  were  aggregated  from  road  tests  conducted  using  a  Portable
Emissions Measurement System (PEMS). Subsequently, the impact of various factors, including vehicle speed, engine
load, and engine RPM, on the generated emissions was investigated.

Methods: In addition,  the methodology for developing emission models,  particularly for THC in LPG vehicles,  is
outlined. The results demonstrate the feasibility of creating reliable and robust emission models characterized by low
mean squared error (MSE) and high R2 values.

Results: These findings contribute to a better understanding of the relationship between operational parameters and
emissions,  providing valuable information for emissions control  strategies in vehicles powered by LPG. Research
highlights  the  potential  of  data-driven  approaches  to  improve  environmental  assessments  and  promote  cleaner
vehicle technologies.

Conclusion: The findings may prove useful in formulating emission reduction strategies and advancing technologies
to reduce the environmental impact of LPG-powered vehicles.
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1. INTRODUCTION
The  growing  global  interest  in  actions  aimed  at

reducing exhaust emissions has led to intensive research
into  alternative  fuels  and  technologies  that  can  help
reduce  the  negative  environmental  impact  of  the
automotive sector [1-3]. One fuel that is gaining popularity
is  liquefied  petroleum  gas  (LPG),  which  produces  fewer
pollutants compared to traditional fuels such as gasoline
and  diesel  [4,  5].  Due  to  its  lower  cost  and  widespread
availability,  LPG  is  widely  used  in  both  passenger  and

commercial  vehicles  [6,  7].
LPG, also known as autogas,  is  a mixture of  propane

and  butane  and  is  widely  used  as  a  fuel  alternative  to
gasoline  and diesel  [8,  9].  LPG has  a  favorable  emission
profile,  producing  lower  amounts  of  harmful  substances
such  as  nitrogen  oxides  (NOx),  particulate  matter  (PM)
and  carbon  dioxide  (CO2)  [10,  11].  Its  combustion
properties  allow  LPG  to  reduce  pollutant  emissions  in
urban  environments,  making  it  a  more  environmentally
friendly fuel. Furthermore, LPG is cheaper than traditional
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fuels,  leading  to  lower  operating  costs  for  vehicles,
especially in commercial fleets [12, 13]. Although LPG has
a lower energy density compared to gasoline, it is widely
applied in passenger and commercial transport, as well as
urban logistics, and is a key element in efforts to reduce
emissions from the transportation sector [14, 15].

This work addresses the issue of emissions analysis of
an LPG-powered vehicle and explores aspects of exhaust
emissions  modeling  for  such  vehicles.  Data  collection  is
carried  out  using  a  portable  emission  measurement
system  (PEMS).  Emission  modeling  for  LPG-powered
vehicles is essential for several reasons. First, in the face
of growing global concerns about air quality and climate
change, understanding emission profiles for vehicles that
use  alternative  fuel  sources,  such  as  LPG,  is  critical  to
formulating  effective  environmental  policies.  LPG  is
recognized as a fuel with lower carbon dioxide (CO2) and
particulate emissions compared to conventional  gasoline
or  diesel,  making  it  a  promising  option  for  reducing
greenhouse  gas  emissions  [16-18].  However,  precise
emission modeling is necessary to quantify these benefits
under  real-world  driving  conditions,  which  can  differ
significantly  from laboratory  tests  [19-21].  Furthermore,
the  use  of  portable  emission  measurement  systems
(PEMS)  allows  for  a  comprehensive  and  continuous
monitoring of  emissions during actual  vehicle  operation,
providing  valuable  data  to  improve  existing  models  and
improve their predictive accuracy [22, 23]. This approach
not only supports regulatory compliance, but also informs
stakeholders, including manufacturers, policymakers, and
consumers, about the environmental performance of LPG-
powered vehicles, contributing to their wider adoption as
part of a sustainable transportation strategy.

Despite  numerous  laboratory  studies  on  emissions
from vehicles powered by LPG, actual pollutant emissions
under  real-world  driving  conditions  remain  a  research
challenge [24]. Various road conditions, driving styles, and
dynamic changes in urban traffic can significantly impact
emission  levels  [25,  26].  Therefore,  the  analysis  of  real-
world  emissions  under  different  driving  conditions  is
essential  for  a  comprehensive  understanding  of  the
environmental  impact  of  LPG.

A  research  aims  to  compare  and  evaluate  exhaust
emissions from a Euro 4 petrol  engine vehicle operating
on both gasoline and liquefied petroleum gas (LPG) [27].
Using an exhaust gas analyzer, the study emphasizes the
importance  of  monitoring  emissions  and  examines  how
fuel  type  affects  emissions  under  various  driving
conditions,  following  the  Real  Driving  Emissions  (RDE)
testing standard. The findings indicate that while gasoline
combustion leads to higher emissions of carbon monoxide
(CO) and carbon dioxide (CO2), combustion of LPG results
in  elevated  levels  of  hydrocarbons  (HC)  and  nitrogen
oxides  (NOx),  illustrating  the  practical  impact  of  fuel
choice  on  environmental  emissions.

Another  study  related  to  the  analysis  of  LPG  vehicle
emissions was conducted [28]. This work investigates the
conversion  of  a  conventional  2-liter  gasoline  hybrid

electric vehicle (HEV) to a liquefied petroleum gas direct
injection  hybrid  electric  vehicle  (LPDI-HEV)  as  part  of
global  efforts  to  achieve  carbon  neutrality  and  evolving
emission regulations. The experimental results reveal that
while LPDI-HEV provides engine output and CO2 emissions
comparable  to  traditional  gasoline  HEVs,  it  significantly
reduces particulate number (PN) emissions, proving more
economical in urban taxi applications and showcasing its
potential as a sustainable transition technology.

In  terms  of  modeling  exhaust  emissions  for  LPG-
powered vehicles, a relevant study is [29]. This research
presents  a  new  methodology  to  develop  microscale  CO2

emission models specifically for LPG vehicles, addressing
the  limited  computational  models  available  in  this  field.
Using  data  from  road  tests  conducted  with  a  portable
emission measurement system (PEMS) and the on-board
diagnostic interface (OBDII), the model utilizes gradient-
boosting  machine  learning  techniques,  achieving  good
precision  with  an  R2  value  of  0.61  and  a  mean  squared
error (MSE) of 0.77. This makes it suitable for analyzing
continuous CO2 emissions and creating emission maps for
urban environmental assessments.

However,  the  literature  indicates  gaps  in  the
methodology for emissions modeling, particularly a lack of
studies  on  modeling  THC  emissions  from  LPG-powered
vehicles [30, 31].

This  article  analyzes  the  real-world  emissions  of  an
LPG-powered  vehicle  using  a  portable  emission
measurement  system  (PEMS).  This  system  enables  real-
time  emission  measurements  under  various  road
conditions, providing accurate data on emissions such as
nitrogen  oxides  (NOx),  carbon  dioxide  (CO2)  and
hydrocarbons  (THC).  The  study  was  carried  out  under
various driving conditions, including urban, suburban, and
highway driving, allowing an assessment of how real world
operating  conditions  affect  the  emission  levels  of  LPG-
powered  vehicles.  Vehicle  operational  data  was
aggregated  into  various  clusters,  such  as  vehicle  speed
and engine RPM.

The  objective  of  this  study  is  not  only  to  evaluate
emissions  under  different  driving  conditions,  but  also  to
present a methodology to analyze these data to develop a
machine learning model to predict THC emissions for LPG-
powered vehicles. This will be the first model available for
an LPG-powered vehicle in the literature.

The  paper  consists  of  a  “Materials  and  Methods”
section, which describes the research equipment used, the
study  subject,  and  the  research  area.  This  section  also
characterizes  the  computational  and  data  analysis
techniques  applied  to  develop  emission  models  for  the
LPG-fueled vehicle.  The subsequent sections present the
research results,  including aggregate  emissions  data  for
CO2,  THC, and NOx, as well as exploratory data analysis
(EDA) and emission modeling results. The paper concludes
with  a  “Discussion”  and  “Conclusion”  section,  which
outline the main findings and compare them with results
from other studies.
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2. MATERIALS AND METHODS
The  overall  workflow  is  presented  in  Fig.  (1).  The

process consists of two steps. The first involves analyzing
emissions data from harmful exhaust components obtained
from road tests for a selected LPG-powered vehicle. This
data  is  then  subjected  to  exploratory  data  analysis  to
identify  the  optimal  set  of  predictors  for  the  THC
emissions  model.  Next,  the  study  presents  the
methodology for creating a THC emissions model for the
LPG-powered vehicle using machine learning techniques.

Fig. (1). General workflow.

The  vehicle  used  in  this  study  is  a  2014  model  that
meets  Euro  6  emission  standards,  ensuring  compliance
with stringent environmental protection requirements. It
is  equipped  with  a  1,149  cm3  spark  ignition  engine
designed  to  operate  on  both  gasoline  and  liquefied
petroleum  gas  (LPG).  The  engine  delivers  a  maximum
power output of 55 kW at 5,500 rpm and a torque of 105
Nm at  4,250 rpm, providing suitable performance under
various operating conditions. The vehicle features a five-
speed manual transmission and a multipoint fuel injection
(MPI) system, which improves fuel efficiency and reduces
pollutant emissions. In addition, the inclusion of a three-
way catalytic converter (TWC) further contributes to the
reduction of harmful substances in the exhaust gases. The
total  weight  of  the  vehicle  is  980  kg.  Fig.  (2)  shows  a
simplified diagram of the tested LPG-powered vehicle with
a  portable  emissions  measurement  system  (PEMS)  and

OBD  II  interface  to  measure  operational  parameters.
For  the  tests  carried  out,  a  Portable  Emission

Measurement  System  (PEMS)  was  used,  allowing  an
accurate  and  direct  analysis  of  real-world  vehicle
emissions  under  actual  road  conditions.  This  system  is
equipped  with  advanced  sensors  that  monitor  levels  of
various  pollutants,  such  as  nitrogen  oxides  (NOx),
hydrocarbons  (HC),  and  carbon  dioxide  (CO2)  [32-34].
Using PEMS technology, real-time measurements can be
taken,  providing  precise  data  on  emissions  in  different
driving  conditions,  including  urban,  suburban,  and
highway scenarios [35]. The mobility of the PEMS enables
its application in various locations and driving scenarios,
which is a significant step toward a better understanding
of the impact of external factors on emissions from LPG-
powered vehicles [36].

Data  analysis  was  carried  out  in  the  Google  Colab
environment, which facilitates the efficient processing of
large data sets and provides access to advanced analytical
tools  [37,  38].  Using  this  platform,  hydrocarbon  (THC)
emissions  modeling  was  performed  on  the  basis  of  data
collected via PEMS measurements. Google Colab, with its
access to cloud computing resources, enabled the use of
Python  and  popular  analytical  libraries  such  as  Pandas,
NumPy, and Scikit-learn for data analysis and predictive
model development [39, 40].

The  first  stage  of  the  presentation  of  the  results
includes  an  overview  of  CO2,  THC  and  NOx  emissions
relative to vehicle speed. In the second stage, the emission
results  are  compared  with  the  engine  load  parameters.
The third stage presents emissions in relation to the speed
of  the  engine.  To  allow  further  data  analysis,  pair  plots
and  a  correlation  matrix  of  selected  operational
parameters  of  the  LPG-powered  vehicle  tested  were
prepared. Finally, the methodology for developing a THC
emission model for this vehicle is discussed.

3. RESULTS

3.1.  Operating  Parameters  of  an  LPG  Vehicle  and
Generated Exhaust Emissions

In the first stage of the study, an analysis of CO2, THC
and  NOx  emission  data  was  carried  out  in  relation  to
vehicle  speed.  Data  were  grouped into  three  categories:
low,  medium,  and  high  speeds.  This  classification  is
intended to reveal the driving characteristics under which
the  highest  accumulation  of  average  emissions  from the
LPG-powered vehicle occurs. The results are presented in
Figs. (3, 4, and 5).

Analysis  of  pollutant  emission  graphs  in  relation  to
vehicle  speed  indicates  a  varied  impact  of  speed  on  the
emission  levels  of  different  substances.  CO2  emissions
show  an  upward  trend  with  increasing  speed,  reaching
their highest levels at high speeds (more than 80 km/h),
suggesting intensified fuel  combustion at  higher speeds.
Meanwhile, THC emissions, although relatively low at low
and  moderate  speeds,  increase  dramatically  at  speeds
above  100  km/h,  possibly  due  to  less  efficient  fuel
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combustion under high engine loads. For NOx emissions,
the highest levels are observed at moderate speeds (40 to
80 km / h), with emissions decreasing at high speeds. This
may  result  from  combustion  conditions  that  favor  NOx
production  at  moderate  speeds,  whereas  higher  speeds

seem  to  reduce  these  emissions.  These  findings
demonstrate  that  vehicle  speed  affects  the  levels  of
specific  pollutants  emission  in  different  ways,  which  is
relevant  for  emission  reduction  strategies  in  road
transportation.

Fig. (2). Simplified diagram of the LPG vehicle tested with installed PEMS.

Fig. (3). CO2 emissions relative to the speed parameter of an LPG vehicle.
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Fig. (4). THC emissions relative to the speed parameter of an LPG vehicle.

Fig. (5). NOx emissions relative to the speed parameter of an LPG vehicle.
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Fig. (6). CO2 emissions relative to the engine load parameter of an LPG vehicle.

Fig. (7). THC emissions relative to the engine load parameter of an LPG vehicle.
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Fig. (8). NOx emissions relative to the engine load parameter of an LPG vehicle.

The next  parameter  analyzed  was  the  engine  load  in
relation to exhaust emissions, with the results presented
in Figs. (6, 7, and 8).

Analysis of pollutant emission graphs as a function of
engine load shows that varying load levels distinctly affect
the emissions of CO2, THC and NOx. CO2 emissions exhibit
an increasing trend, reaching a peak at maximum engine
load,  indicating  a  direct  relationship  between  fuel
consumption  and  greenhouse  gas  emissions.  On  the
contrary, THC emissions are highest at moderate engine
loads (40–60%),  which can result  from less efficient  fuel
combustion under these conditions, leading to incomplete
hydrocarbon oxidation. On the other hand, NOx emissions
reach  their  peak  values  at  moderate  engine  loads,
decreasing  at  both  very  low  and  very  high  loads,
potentially due to optimal combustion temperatures that
favor  nitrogen  oxide  formation  at  moderate  load  levels.
These findings reveal that the levels of specific pollutants'
emission depend highly on engine operating conditions, a
factor  crucial  to  the  development  of  effective  emission
reduction  strategies  for  motor  vehicles.

The  next  parameter  studied  was  the  speed  of  the
engine and its influence on the pollutant emissions of the
LPG-fueled vehicle. The engine speed was classified into
three  categories:  low,  medium,  and  high.  The  results  of
the CO2, THC and NOx emissions based on this operating
parameter are shown in Figs. (9, 10, and 11).

Analysis  of  pollutant  emissions  in  relation  to  engine
speed (RPM) reveals distinct differences in CO2, THC and
NOx  emissions  across  RPM  categories.  CO2  emissions

increase  with  higher  RPM,  reaching  their  maximum  at
high  speeds,  indicating  intensified  fuel  combustion  at
elevated engine speeds. THC emissions remain low at low
and moderate RPM but rise sharply at  high RPM (above
3000  rotations  per  minute),  likely  due  to  incomplete
combustion under higher load conditions. In contrast, NOx
emissions peak at moderate RPM (around 2000 RPM) and
decrease  at  high  RPM,  suggesting  that  combustion  at
moderate  engine  speeds  creates  optimal  conditions  for
nitrogen oxide formation, while higher speeds may reduce
this effect. These findings indicate that pollutant emissions
are closely related to engine RPM, highlighting the need
to  consider  specific  emissions  behavior  at  various  RPM
levels  to  develop  effective  emission  reduction  strategies
for vehicles.

3.2. EDA for Data as Input for Subsequent Analyses
and Machine Learning Model Development

Exploratory  data  analysis  (EDA)  is  a  process  used  to
gain a deep understanding and preliminary analysis of a
data  set  before  building  a  machine  learning  model  [41,
42].  Performing EDA helps to uncover the structure and
characteristics  of  the  data,  as  well  as  to  identify  issues
such  as  missing  data,  outliers,  inconsistencies,  and
potential  anomalies  [43,  44].  EDA  also  enables  the
discovery of important patterns and relationships between
variables, which is invaluable when selecting appropriate
features for modeling [45, 46].  Additionally,  this process
aids  in  data  preparation,  allowing scaling,  cleaning,  and
the  creation  of  new  variable  types  of  features,  which
ultimately  improves  model  performance  [47,  48].  A  pair
plot  is  also  utilized  as  part  of  EDA,  providing  a  visual
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examination  of  relationships  between  pairs  of  numerical
variables  in  the  data  set.  The  pair  plot  allows  for  the
assessment  of  variable  distributions  along  the  diagonal

and helps identify outliers, offering a comprehensive view
of  the  data  and  any  potential  issues  that  may  impact
analysis  and  modeling  results.

Fig. (9). CO2 emissions relative to the engine RPM parameter of an LPG vehicle.

Fig. (10). THC emissions relative to the engine RPM parameter of an LPG vehicle.
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Fig. (11). NOx emissions relative to the engine RPM parameter of an LPG vehicle.

The pair plot for the emission data and selected engine
parameters is shown in Fig. (12).

Fig. (12) shows the relationships between the selected
engine parameters and exhaust emissions in LPG-powered
vehicles and serves as an example of  a pair  plot  used in
exploratory data analysis (EDA). This type of graph allows
for the quick identification of potential relationships and
correlations between variables, which is important when
analyzing  emissions.  Along  the  diagonal,  we  see  the
distributions  of  individual  variables:  the  engine  RPM
distribution  is  multimodal,  which  may  suggest  different
engine  operating  modes,  while  the  speed  (Speed)
distribution  is  right-skewed,  indicating  that  most
observations come from lower speeds. CO2 emissions are
concentrated at lower values, with some higher deviations,
while THC and NOx emissions are strongly concentrated
around  very  low  values,  suggesting  that  their  emissions
are  often  minimal  or  very  low.  Analysis  of  relationships
between  variables  shows  that  engine  RPM  is  strongly
correlated with vehicle  speed –  the higher the RPM, the
higher  the  speed.  Both  RPM  and  speed  also  show  a
positive  correlation  with  CO2  emissions,  which  is  in  line
with  intuition,  as  higher  RPM  and  speed  are  associated
with  increased  fuel  consumption  and  higher  CO2

emissions.  In  the  case  of  THC  and  NOx  emissions,  the
relationship between speed and RPM is less pronounced,
although  THC  emissions  increase  at  higher  RPM  and
speed  values,  while  NOx  emissions  occur  primarily  at
lower  speeds  and  RPM.  The  relationships  between
different emissions also provide interesting insights – THC
emissions  appear  to  increase  with  CO2  emissions,  while

NOx  emissions  are  more  dispersed  and  may  depend  on
specific engine operating conditions.

The  correlation  heat  map  plays  a  crucial  role  in
exploratory data analysis (EDA) during the development of
predictive models, as it allows the quick identification of
relationships between variables [49, 50]. This visualization
helps  detect  highly  correlated  variables,  which  may  be
redundant – an essential step, as an excess of correlated
features leads to information duplication, increased model
complexity, and the risk of overfitting [51, 52]. Correlation
analysis  enables  the  selection  of  the  most  relevant
features, allowing one of the strongly correlated variables
to  be  removed  in  favor  of  the  one  with  a  stronger
relationship  to  the  target  variable.  Additionally,  the
correlation  heatmap  offers  better  insight  into  the  data
structure and intervariable dependencies, supporting the
choice of algorithm and approach to feature engineering.
It  also  facilitates  the  early  detection  of  issues  such  as
multicollinearity,  which  can  affect  the  stability  and
interpretability  of  the  model,  especially  in  linear
regression  contexts  [53,  54].  Fig.  (13)  presents  the
correlation heatmap for emission data and selected vehicle
measurement operational parameters.

Fig. (13) shows a correlation matrix that illustrates the
strength  and  direction  of  relationships  between  various
variables  related  to  emissions  and engine  parameters  in
LPG-powered vehicles. Each cell in the matrix contains a
correlation coefficient (ranging from -1 to 1), represented
by  color:  from  shades  of  red  (for  strong  positive
correlations) to blue (for negative correlations). Analyzing
the relationships, we can observe that CO2 emissions have
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Fig. (12). A pairplot chart for emission data and selected operating parameters of an LPG vehicle.

a strong positive correlation with GPS speed (0.68), engine
RPM  (0.72)  and  throttle  position  (0.63),  indicating  that
higher values of these variables are associated with higher
CO2  emissions.  THC  emissions  show  a  moderate
correlation  with  GPS  speed  (0.43)  and  engine  speed
(0.47),  suggesting  that  increases  in  THC  are  also

associated with more intense engine operation, although
this relationship is weaker than that of  CO2.  In contrast,
NOx emissions do not show significant relationships with
other  variables,  which  may  indicate  that  their  values
depend  on  more  complex  factors  independent  of  simple
engine  operation  parameters.  Engine  operation
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parameters  also  display  strong  correlations  among
themselves:  The  GPS  speed  is  strongly  positively
correlated  with  the  engine  RPM  (0.90),  confirming  that
higher driving speeds are typically associated with higher
RPMs.  The  engine  load  is  clearly  correlated  with  the
throttle  position  (0.83),  which  is  logical,  as  a  larger
throttle opening is associated with a higher engine load.

Based on Figs. (12 and 13), the GPS speed and engine
RPM variables were selected for the example construction
of  the  THC  emission  model  for  the  vehicle  powered  by
LPG.

3.3.  Creating  a  THC  Emissions  Model  for  an  LPG
Vehicle

To predict total hydrocarbon emissions (THC) based on
GPS  speed  and  engine  RPM  data,  a  machine  learning
approach  was  employed.  The  process  began  with  the
import of the necessary libraries, such as pandas, numpy,
matplotlib,  and  scikit-learn,  which  facilitate  data
manipulation, result visualization, and model creation. The
data  were  then  loaded  from  a  CSV  file,  allowing  for
preliminary  analysis.

Two key attributes for the model were selected: GPS
speed  (in  km/h)  and  engine  RPM,  with  THC assigned  as
the target variable. The data was then split into training
and test sets in an 80/20 ratio, a standard practice in data

analysis  that  allows  for  the  evaluation  of  model
performance  on  unseen  data.

To  predict  THC  values,  a  random  forest  regression
model  was  used,  known  for  its  high  effectiveness  in
regression  problems.  Random  Forest  Regressor  is  an
algorithm  from  the  family  of  random  forests  that  uses
ensembles of decision trees to predict continuous values.
It  is  an  ensemble  learning  method  that  combines  the
results of multiple decision trees to achieve more accurate
and stable predictions [55, 56]. In this model, each tree is
trained  on  a  different  subset  of  data  and  features,
reducing model variance and protecting against overfitting
[57-59].  The  model  was  trained  in  the  training  set,
allowing it to learn the patterns present in the data. After
completing the training process, predictions were made on
the test set, allowing the evaluation of the model quality.
The  results  were  promising,  with  a  mean  squared  error
(MSE) of 1.69e-08 and a determination coefficient (R2) of
0.9015.  The  R2  value  indicates  that  the  model  explains
approximately 90.15% of the variability in the THC data,
suggesting that the model is well adapted to the data.

The  model  validation  results,  presented  through  a
histogram and an actual vs. predicted plot, are shown in
Fig. (14). These plots confirm the high effectiveness of the
THC prediction model for the LPG-powered vehicle.

Fig. (13). Correlation heatmap for analyzed vehicle parameters.
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Fig. (14). Actual vs. predicted THC emission values with histogram.

Fig. (14) presents an analysis of the results of the THC
emission prediction using a predictive model. The plot on
the left illustrates the comparison between the actual THC
values and those predicted by the model. The values are
distributed  around  the  dashed  line,  which  represents
perfect agreement (y = x); the closer the points are to this
line, the better the alignment between the predictions and
the  actual  values.  Most  points  are  close  to  the  line,
indicating  that  the  model  predicts  THC  emissions  well,
although  some  minor  deviations  occur  at  higher  actual
values,  suggesting  slight  prediction  errors  for  extreme
emission values. The right plot shows a histogram of the
actual and predicted THC values, allowing an assessment
of the distribution alignment between these two data sets.
Both  distribution  lines  are  highly  concentrated  around
very low THC values,  which is  in line with the nature of
THC  emissions  (high  values  are  rare).  The  actual  and
predicted  distributions  are  almost  identical,  further
confirming  that  the  model  accurately  captures  the
characteristics  of  THC  emissions  in  the  data.

4. DISCUSSION
The results  of  the analysis  of  the emission data from

LPG-powered vehicles provide significant information on
the  relationships  between  operational  parameters  and
exhaust emissions. Studying CO2, THC, and NOx emissions
in  the  context  of  factors  such  as  vehicle  speed,  engine
load,  and  engine  RPM  reveals  clear  patterns  that  are
crucial  to  understanding  the  emission  behavior  of  LPG
vehicles under various driving conditions.

The analysis showed that CO2 emissions increase with
higher vehicle speeds, particularly at speeds exceeding 80
km/h,  which  is  consistent  with  expectations  for  fuel
combustion  efficiency.  This  trend  suggests  that  higher
speeds  lead  to  increased  fuel  consumption  and,
consequently,  to  increased  CO2  emissions.  In  contrast,
THC  emissions  show  a  significant  increase  at  speeds
greater than 100 km/h, indicating a potential decrease in
combustion  efficiency  and  the  onset  of  incomplete

combustion under high engine loads. This underscores the
need for improved combustion control mechanisms in LPG
vehicles, especially during high-speed driving.

The analysis of engine load further illustrates emission
profiles. The results indicate that THC emissions peak at
moderate  engine  loads  (40-60%),  which  may  suggest
suboptimal  combustion  conditions  that  require  further
tuning of the engine management system. However, NOx
emissions reach their highest values at intermediate loads,
consistent  with  the  temperature  dependence  of  NOx
formation  during  combustion.

The  application  of  machine  learning  techniques,
particularly  random  forest  regression,  in  emission
modeling yielded promising results. The low mean squared
error (MSE) and the high coefficient of determination (R2)
suggest that the model effectively captured the patterns in
the data. This indicates that machine learning approaches
can serve as valuable tools to predict emissions based on
operational  parameters,  potentially  facilitating  the
development  of  real-time  monitoring  systems  for  LPG
vehicles. Such conclusions can also be drawn from similar
work for other vehicles powered by other fuels [60-62].

The literature on the analyzed topic reveals gaps in the
modeling  of  emissions  for  LPG-powered  vehicles  [63].
Another  study  focuses  on  the  conversion  of  gasoline
engine  vehicles  to  LPG,  highlighting  the  ecological  and
economic benefits of this fuel. This article details the gas
injection  system  installation  process,  its  calibration  and
road testing to compare the performance of vehicles using
conventional and alternative fuels. Differences compared
to the presented work include a focus on the conversion
process  and  calibration  of  the  LPG  system,  while  the
current work concentrates on the analysis of emission data
from LPG-powered  vehicles  and  THC emission  modeling
based on speed and engine RPM.

Another  study  [64]  focuses  on  emissions  from  LPG-
powered  vehicles  under  real  driving  conditions  (RDE)
using  portable  emissions  measurement  systems  (PEMS),
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examining  the  emissions  of  harmful  substances  and  CO2

from  a  Dacia  Duster  1.0  TCe  100  ECO-G  running  on
Eurosuper  95  gasoline  and  LPG.  The  research  aimed  to
determine  the  emission  levels  according  to  the  RDE
procedure  and  to  compare  the  results  for  both  types  of
fuel. Another study [29] focuses on methods for reducing
CO2  emissions from vehicle exhaust systems through the
use  of  LPG,  considering  its  widespread use  in  European
countries such as Poland, Romania and Italy. The authors
present  an  innovative  methodology  to  create  microscale
CO2  emission  models  for  LPG-powered  vehicles,  using
data  from  road  tests  and  OBDII  diagnostic  interfaces.
Differences compared to the presented work include the
application of gradient machine learning to analyze data
and predict CO2 emissions, while the current work focuses
on  modeling  THC  emissions  with  respect  to  speed  and
engine RPM.

There  are  significant  gaps  in  the  literature  on  LPG
vehicle emission modeling, particularly on the application
of  machine  learning  techniques  [65,  66].  The  work  is
timely because it uses artificial intelligence algorithms for
the emissions modeling process [67-70]. This work is one
of  the  first  to  present  a  methodology  for  modeling  THC
emissions based on operational parameters such as speed
and engine RPM.

The  findings  of  this  study  are  consistent  with  recent
research on transportation and emissions modeling, which
highlights the growing importance of integrating energy-
saving  approaches  and  advanced  technologies  in  the
context of smart cities. For example, Macioszek et al. [71]
emphasized the need for multidisciplinary approaches to
address  global  energy  challenges  in  urban  mobility
systems,  including  the  reduction  of  vehicular  emissions
through optimized traffic management. Similarly, Acuto et
al.  [72]  demonstrated  the  importance  of  analyzing
environmental performance in urban environments, where
the use of simulation models such as VSP (Vehicle Specific
Power)  can  provide  insights  into  emission  patterns  and
guide the design of more sustainable urban infrastructure.
These studies  support  the  need for  comprehensive  data-
driven solutions,  similar  to the machine learning models
applied  in  this  research,  which  can  predict  emissions
based  on  operational  parameters.

Additionally,  work  [73]  on  modeling  CO2  emissions
from  vehicles  fueled  with  compressed  natural  gas
underscores  the  growing  need  for  microscale  emission
models,  especially  those  considering  real  driving  cycles.
Such  models  can  offer  valuable  benchmarks  for  our
understanding of LPG vehicle emissions, as both CNG and
LPG  are  often  seen  as  alternative  and  environmentally
friendly fuels. Furthermore, the increasing integration of
artificial intelligence techniques in transportation energy
modeling,  as  seen  in  the  study  [74]  on  electric  vehicles,
aligns  with  our  use  of  machine  learning  to  predict  and
optimize emissions, paving the way for the development of
more  sophisticated  systems  for  real-time  emission
monitoring.

The  broader  context  of  these  studies,  which  explore

innovations  in  vehicular  networks,  energy  savings,  and
environmental impacts, is reinforced by Al-Mekhlafi et al.
[75, 76], who investigated the potential of vehicular ad hoc
networks (VANETs) and fog computing to improve vehicle
communication systems and optimize energy usage. These
technologies  could  eventually  complement  emission
reduction efforts  by  enabling real-time data  sharing and
improving vehicle performance tracking.

Although this  study provides valuable information on
the emission patterns of LPG-powered vehicles, there are
several  areas  for  future  research  that  could  further
improve  our  understanding  and  contribute  to  emission
reduction strategies. One of the primary limitations of the
current study is that the data was sourced from a single
vehicle  model.  This  limits  the  generalizability  of  the
findings,  as  different  LPG  vehicles  may  have  different
emission profiles depending on engine design, fuel system
configuration,  and emission control  technologies.  Future
work  should  involve  a  wider  set  of  vehicle  models  with
varying  engine  configurations  and  emission  control
systems.  This  would  help  assess  the  consistency  of
observed  trends  across  a  more  diverse  range  of  LPG-
powered  vehicles  and  allow  for  a  more  accurate
generalization  of  the  emission  predictions.

In addition, the current study focused primarily on the
relationship  between  emissions  and  key  operational
parameters,  such  as  vehicle  speed,  engine  load,  and
engine  RPM.  While  these  parameters  offer  valuable
information,  further  research  could  explore  additional
factors  that  influence  emissions,  such  as  ambient
temperature, driving behavior (e.g., acceleration patterns
and driving  cycles),  and  fuel  quality.  Incorporating  such
variables into emission models could lead to more robust
and  realistic  predictions,  which  would  be  especially
valuable  for  real-time  monitoring  systems.

The  application  of  machine  learning  models  such  as
Random Forest in emission prediction has shown promise,
but future work should explore the use of other advanced
techniques, such as deep learning and neural networks, to
further refine predictive accuracy. This could enable the
development  of  more  sophisticated  models  that  account
for complex, non-linear relationships between operational
parameters and emissions. Additionally, the integration of
real-time vehicle data from onboard diagnostics (OBD-II)
systems  could  improve  the  models  by  incorporating
dynamic  driving  conditions,  providing  a  more
comprehensive  picture  of  emissions  over  time.

Another area of future exploration is the development
of emission reduction strategies based on the findings of
this  study.  Although  the  results  suggest  potential
improvements in combustion efficiency, future work could
include  the  testing  of  various  optimization  methods  for
LPG engine tuning. This could include the integration of
adaptive control strategies that adjust engine parameters
in  real-time  to  minimize  emissions  based  on  current
driving  conditions.

In summary, this study emphasizes the critical need for
continued  research  into  the  emissions  profiles  of  LPG-
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powered  vehicles  and  the  effectiveness  of  various
operational parameters that affect these emissions. Using
advanced  data  analysis  techniques,  the  automotive
industry  can  strengthen  its  efforts  to  develop  cleaner
vehicle technologies,  contributing to the broader goal  of
reducing  greenhouse  gas  emissions  and  improving  air
quality.

CONCLUSION
The study provides valuable information on the impact

of operational parameters on exhaust emissions from LPG-
powered  vehicles.  Analysis  of  CO2,  THC,  and  NOx
emissions  in  relation  to  vehicle  speed,  engine  load,  and
engine  RPM  revealed  distinct  patterns.  CO2  emissions
increased with speed, while THC emissions rose sharply at
speeds  above  100  km/h,  indicating  combustion
inefficiencies  under  high  engine  loads.  NOx  emissions
peaked  at  moderate  speeds,  highlighting  the  varying
effects  of  driving  conditions  on  emissions.

Regarding engine load, CO2 emissions increased with
higher  loads,  while  THC  emissions  peaked  at  moderate
loads. NOx emissions showed a similar trend, peaking at
moderate loads and decreasing at both lower and higher
levels. The RPM of the engine had a clear impact, with CO2

emissions  increasing  at  higher  RPM,  THC rising  at  high
RPM  and  NOx  peaking  at  moderate  RPM.  Machine
learning  models,  particularly  random  forest  regression,
successfully  predicted  THC  emissions  based  on  engine
parameters, achieving a high R2 value of 0.9015 and a low
MSE,  suggesting  their  potential  for  real-time  emission
monitoring.  Despite  promising  results,  the  study  was
based  on  data  from  a  single  vehicle  type,  limiting  its
generalizability.  Future  research  should  include  a  wider
range  of  LPG  vehicle  models.  Overall,  this  research
underscores  the  potential  of  LPG  vehicles  to  reduce
emissions and provides valuable information for improving
emission control strategies.
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