
The Open Transportation Journal ISSN: 1874-4478
DOI: 10.2174/0126671212368245250102101549, 2025, 19, e26671212368245 1

RESEARCH ARTICLE OPEN ACCESS

A Game Theory Approach to Trip Distribution Model:
Game Distribution Model

Sümeyye Şeyma Kuşakcı Gündoğar1,*  and Hüseyin Onur Tezcan1

1Department  of  Civil  Engineering,  Faculty  of  Civil  Engineering,  Istanbul  Technical  University,  Maslak,  Istanbul,
Turkey

Abstract:
Introduction: In Transport planning, the four-step travel demand model is one of the most popular macro scale
planning tools since the 1970s. The second step of this traditional model, i.e., trip distribution, plays an essential role
in the model and at the same time, it is the most controversial step.

Methods: Various alternative approaches are available in the literature for modelling trip distribution, such as the
Gravity  Model,  intervening  opportunities  model,  logit  models  etc.  However,  none  of  these  models  is  universally
accepted. Although the gravity model is the most common and well-known trip distribution model, it is often subject
to the same criticisms as other alternative models. In this study, the trip distribution step of the four-step model is
designed as a rational game to replicate preferences in a more realistic way. The usual assumption in the traditional
distribution model is that decision-makers are influenced by only origin/destination-based travel attributes and/or
impedance of the trip to the destination. However, other probable destination circumstances are not included in this
procedure.  In  order  to  incorporate  the  actual  determinants  of  trip  making,  Traffic  Analysis  Zones  (TAZ)  are
considered  to  be  gamers  in  the  proposed  model,  and  the  generalized  trip  cost  was  considered  to  be  the  cost  of
gamers. Each TAZ has a utility that attracts individuals from other TAZs. Trips are distributed by comparing the
utility of a TAZ with the associated cost. Empirical verification of the model is performed by using the household
survey data for Eskişehir/Turkey.

Results:  The  evaluation  was  performed  with  different  goodness  of  fit  statistics  for  5  different  structured  O/D
matrices representing various demand settings. The results indicate that the proposed model demonstrates strong
performance according to selected micro- and macro-level goodness-of-fit statistics, with all R2 values exceeding 0.80.

Conclusion: When compared to the classic Gravity Model,  these goodness-of-fit  measures yield better results in
general.
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1. INTRODUCTION
People travel to fulfill various activities, and this need

directly arises from activity demand, with travel remaining
the essential link for achieving these goals. Transportation

planning aims to develop models  that  represent  the real
world  and  simulate  travel  patterns  with  measurable
elements.  The  aim  of  developing  such  models  is  to
understand the present dynamics and make forecasts for
the future in order to detect, locate, and solve existing and
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future  problems  in  transportation  systems.  These
problems  often  harm  not  only  travelers  but  also  the
community  through  negative  impacts,  such  as  waste  of
fuel,  loss  of  time,  and  environmental  pollution.
Interventions  that  will  either  affect  the  supply  (road
widening, etc.) or the demand (public transport incentives,
congestion pricing, etc.) are recommended for the solution
of the problems identified with these models. The trips are
tried to be aggregated in the widely used transportation
planning  models,  although  each  trip  is  the  choice  of  an
individual.  Recent  studies  have  shown  that  models  that
take individual choices and their underlying factors with
disaggregated data into account can yield more accurate
results.

The  modelling  field  is  dominated  by  the  approach
known  as  the  four-step  travel  demand  model.  In  this
model,  trips  are  evaluated  on  a  macro  scale,  and
aggregated data are used in all steps. It uses generalized
features such as population and employment rather than
passenger  characteristics.  Accordingly,  this  model  does
not consider the effects of trips on each other. Four-step
travel demand model has four steps: trip generation, trip
distribution, mode choice, and trip assignment. In the trip
generation step, the number of trips that start and end at
each  of  the  sub-regions  is  estimated.  These  sub-regions
are named as Traffic Analysis Zones (TAZ). TAZs are tried
to  be  established  in  such  a  way  that  they  contain
homogenous users. Trip distribution is the second step of
the  four-step  model  and  addresses  the  question  of  how
many trips occur between each TAZ pair. The outputs of
trip  distribution  are  origin-destination  zonal  trip  tables
(O/D matrices)  by purpose.  These O/D matrices are split
into  the  travel  modes,  and  a  separate  matrix  for  each
mode  is  determined  at  the  mode  choice  step.  The  final
step  in  the  four-step  model  is  the  trip  assignment.  This
step consists of separate highway and transit assignment
processes.  The  highway  assignment  process  determines
routes for vehicle trips along the road network, while the
transit assignment process determines routes (or options)
for using various transit route alternatives.

All steps of the four-step model work together to make
the  most  accurate  prediction.  The  reliability  and
correctness of each step are critical for the next step and,
ultimately,  for  the  success  of  the  model.  Especially  the
second step, trip distribution, has a more important place
because both the mode choice and the assignment steps
use  the  O/D  matrices  determined  in  this  step.  Hence,
improving trip distribution models is crucial for complete
model success.

In  the  literature,  the  question  of  modelling  trip
distribution  has  been  approached  by  researchers  from
different  disciplines,  such  as  geographers,  economists,
and  urban  planners  [1].  The  primary  purpose  of  all
distribution models is to distribute the total demand from
a given origin among the different destinations. The inputs
to  common  trip  distribution  models  include  the  trip
generation  outputs  and  measures  of  travel  impedance
between  each  pair  of  zones  obtained  from  the
transportation  network.  Additionally,  this  impedance  is

usually included in the model as the physical distance or
cost  of  this  distance  or  measured/assigned  travel  time.
While distance is undoubtedly an important factor in trip
distribution,  it  is  not  the  sole  determinant.  Different
models can be produced to improve this situation. In the
Intervening Opportunities model, trip making is influenced
not  only  by  travel  distance  but  also  by  accessible
opportunities.  With  advancements  in  decision-making
models,  disaggregate  models  have  started  to  be
developed.These  models  include  new  dimensions  to  the
analyses including socio-economic factors  that  could not
be addressed before.

In general, travel decisions can be influenced by other
passengers'  preferences.  However,  this  effect  is  not
considered  in  classical  distribution  models.  For  this
reason,  this  study  aims  to  propose  a  new model  for  trip
distribution that accounts for preferences. The proposed
model will consider trips as a game between TAZs. In this
way,  the model  will  not  only consider travel  impedances
between  TAZs  but  also  it  will  incorporate  the  desire  to
travel  to  other  TAZs.  With  the  new  model's  success  in
expressing  actual  travel  distributions,  it  will  be  ensured
that the outcome of the classical four-step model will  be
more useful compared to the previous approaches.

The  paper  is  organized  as  follows:  The  next  section
provides a detailed literature review, including the place
of  trip  distribution  in  the  broader  transportation  model
system and  the  main  approaches  used  in  aggregate  trip
distribution  models.  This  section  also  reviews  the
development of  game theory in transportation modelling
until today. Section 3 presents the background and details
of  the  proposed  model  named  the  Game  Distribution
Model.  In this  section,  the new model  is  applied to real-
world  data  and  the  results  are  compared  with  the  ones
obtained  from  the  traditional  model.  Section  4  presents
the results of the analyses.  In the next two sections,  the
findings and deductions obtained from the model, as well
as the limitations of the proposed approach, are discussed
and presented.

2. LITERATURE REVIEW

2.1. The Place of Trip Distribution in Transportation
Models

By  the  1950s,  car  ownership  increased  rapidly,  and
travel  modelling  became  necessary  to  design  future
transportation systems considering community needs and
expectations. Trip distribution, which is the second step of
the travel demand model, is intended to produce the best
possible  predictions  of  participant  destination  choices
based on trip generation and attraction information. Two
broad  approaches  are  used  in  travel  distribution:
aggregate  and  disaggregate  [1].  Aggregate  models  use
data aggregated over a series of geographic sub-regions
called TAZs.  Together,  these zones represent  an activity
system served by a transportation network, and aggregate
models analyze each TAZ’s total number of trips. On the
other hand, disaggregate models such as discrete choice
models,  family,  and  activity-based  models  deal  with
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individuals'  behaviors  and  destination  choices.  These
models  are  generally  derived  from  the  notions  of  utility
theory [2].

The first-generation aggregate trip distribution models
use  growth  factors  from  extensive  surveys  of  origin-
destination  flows.  Growth  factor  methods  may  be
subdivided  into  four  groups:  constant  factor  method,
average  factor  method,  Fratar  method,  and  Furness
method.  Fratar  and  Furness  are  the  most  popular
algorithms [3]. Fratar [4] developed a model that made the
factoring  of  an  observed  flow  matrix.  It  makes  the
assumption  that  the  existing  trips  will  increase  in
proportion to the production and attraction growth factors
of  TAZs.  After  the  Fratar  model,  Furness  [5]  proposes  a
model  which is  one of  the best  known iterative  methods
that uses two growth factors and two balancing factors. All
growth  factor  methods  work  regardless  of  increased
supply or changed spatial accessibility that occur due to
changes in travel patterns and congestion [6].

In  addition  to  growth  factor  models,  there  are
synthetic  distribution  models  in  the  literature.  These
models  attempt  to  identify  the  causes  of  current  travel
patterns  and  then  assume  that  these  underlying  causes
will  remain  the  same  in  the  future  [3].  The  most  well-
known  synthetic  distribution  model  is  called  the  gravity
model.  The  important  feature  that  distinguishes  the
gravity model from growth factor models is that it models
not  only  according  to  the  demand in  the  future  but  also
takes  into  account  the  concept  of  the  hardship  of
travelling.  The  hardship  is  represented  by  travel
impedances,  a  feature  introduced  by  the  gravity  model.
The first use of the gravity model occurred in the 1950s,
and later, many other aggregate or disaggregate models
followed the initial trip distribution techniques.

Disaggregate trip distribution models were developed
after  significant  improvements  in  the  discrete  choice
modelling technique. These models aim to better predict
travel  behavior  by  including  variables  other  than  travel
time  [6].  They  calculate  the  choice  probabilities  of  the
individuals  or  groups of  individuals  with  models  such as
Multinomial  Logit  or  Nested  Logit  [7].  Later,  more
sophisticated models were developed, such as the Mixed
Logit [8] and the Activity-Based Approach [9].  There are
also  some studies  examining  the  use  of  Artificial  Neural
Networks  in  disaggregate  trip  distribution  models  [10].
The  advantage  of  these  models  is  that  it  is  possible  to
introduce  different  attributes  into  the  decision-making
process.

2.2.  Main  Approaches  Used  in  Aggregate  Trip
Distribution Models

The primary purpose of this study is to propose a new
approach  and  calculation  procedure  for  aggregate  trip
distribution  models.  Therefore,  first  of  all,  well-known
main  aggregate  approaches  have  been  explained  in  this
section.

2.2.1. The Gravity Model
The doubly constrained classical gravity model [11] is

the  best-known  and  most  basic  aggregate  distribution
model.  It  is  named  for  its  similarity  to  Newton's  law  of
universal gravitation.This model assumes that the number
of  trips  between  two  locations  is  related  to  their
populations and decays with an impedance function. The
gravity model's inputs include the trip generation outputs
(productions and attractions) for each zone and measures
of travel impedance between each pair of zones obtained
from  the  transportation  network.  In  addition,  socio-
economic and area characteristics are sometimes used as
inputs as well [12].

Probably the first rigorous use of a gravity model was
by  Casey  in  1955,  and  the  most  straightforward
formulation of the model has the following functional form
[13]:

(1)

In this model, TijT_{ij}Tij represents the trips between
an origin zone i and a destination zone j, while Oi and Dj
denote  the  trip  ends  produced  at  i  and  attracted  at  j,
respectively.  The  proportionality  factor  α\alphaα  can  be
replaced  by  the  multiplication  of  two  sets  of  balancing
factors, Ai and Bj, as used in the Furness algorithm [13].

In  Eq.  (1)  f(cij)  function  represents  a  generalized
function of the travel expense (cost or time) between every
pair of zones and has one or more calibration parameters.
This  function  often  receives  the  name  ‘deterrence
function’ because it represents the disincentive to travel
as distance (time) or cost increases. Well-known functional
forms are presented in Eqs. (2-4) [14]:

(2)

(3)

(4)

Where β and n are parameters to be calibrated, and cij

is the deterrence value.
In order for the trip distribution step to be completed,

the sum of the trips produced between any origin zone i
and all destination zones j ∈ Z (Zones) should be equal to
the total trip ends produced at the origin zone. Similarly,
the sum of the trips attracted between any origin zone i
and all destination zones j ∈ Z should be equal to the total
trip ends attracted at the origin zone. These are known as
the flow conservation constraints given in Eqs. (5 and 6):

(5)

(6)

With  its  well-known  theoretical  base,  gravity-type
spatial interaction models have been the most commonly
used aggregate trip distribution models [15]. The gravity
model is primarily far easier to estimate, with only one or
two  parameters  in  the  deterrence  function  formulas  to
calibrate and easy application and calibration procedures
using various travel modelling software [12].

Despite its widespread use, there are many criticisms

Tij =α*Oi*Dj*f(cij)                                 

Exponential function                            f(cij)= exp (-βcij) 

Power function  f(cij)= cij
-n

Tanner (or Gamma) function                   f(cij)= cij
-n exp (-βcij)           

ij =Oi       i ∈ Z 

ij =Dj       j ∈ Z 
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of  the  gravity  model.  Mainly,  it  uses  an  aggregate
procedure  and  does  not  refer  to  any  explicit  individual
behavioral theory. Moreover, the model assumes that all
information lies in the constraints; it does not consider any
perception attributes [1].

2.2.2. Other Approaches
First-generation trip distribution models were used as

Growth-factor models. Generally, originating and attracted
trip totals are known collectively as an output of the trip
generation step. In 1954, A method was introduced by T. J.
Fratar  to  overcome  some  of  the  disadvantages  of  the
doubly  costraint  methods  [4].  The  multiplication  of  the
existing  flow  by  two  growth  factors  (row  and  column
growth factors from production and attraction values) will
result in the future trips originating in zone i being greater
than the future forecasts, and so a normalizing expression
is introduced [3].  The Fratar formulation is presented in
Eq. (7).

(7)

Tij and Tij
0 are the future and observed number of trips

between zones i and j. Fi is the row factor from production,
Fj is the column factor from attaction. k is the number of
total zones.

After  the  Fratar  algorithm,  Furness  proposed  an
iterative  method  in  1965  [5].  In  this  method,  the
productions of  flows from a zone are first  balanced,  and
then  the  attractions  to  a  zone  are  balanced  [3].  The
equation of this model, in which two growth factors (row
factor Fi,  column factor Fj) and two balancing factors (Ai

and Bj) are used, is given in Eq. (8).

(8)

The  Doubly  Constrained  Growth  Factor  Model
converges very quickly in most cases and is usually used
to model the external to external movements or estimate
goods vehicles and freight [16]. This model has two major
disadvantages:  a  zero  cell  in  the  matrix  remains  zero
regardless of how many times it is factored. The second is
that  it  is  not  sensitive  to  possible  changes  or  enhance-
ments in the transport system.

Another  popular  approach  is  the  Intervening
Opportunities  Model  developed  by  Stouffer  [17]  and
refined  by  Schneider  [18]  in  the  Chicago  Area
Transportation Study. In this model, the distance does not
affect  the  destination  choice,  playing  only  the  role  of  a
surrogate  for  the  number  of  intervening  opportunities
between  them  [19].  The  number  of  persons  going  to  a
given  distance  is  directly  proportional  to  the  number  of
opportunities at that distance and inversely proportional
to the number of intervening opportunities.

The  most  widely  used  form  of  the  intervening
opportunities  model  can  be  written  as  shown  in  Eq.  (9)
[20]:

(9)

Tij is the predicted number of trips, ki is a constant or
balancing factor, Oi  is the total production from origin i,
and  V  is  the  number  of  opportunities.  Finally,  L  is  a
constant probability that a random destination will satisfy
the  needs  of  a  traveler.  According  to  Ortuzar  and
Willumsen [13], intervening opportunities model has three
main  disadvantages.  The  theoretical  basis  is  less  well-
known  and  more  complicated  than  the  gravity  model.  It
does not include any practically measured trip deterrence
attribute  (i.e.,  cost,  etc.)  and  does  not  have  a  suitable
software.

2.3. Game Theory
In this section, the background of game theory, which

is the main method that the proposed model is built upon,
is presented. The basis of game theory is the assumption
that  an  individual  who  makes  choices  interacts
strategically with other individuals. Players are aware that
their  decisions  affect  each  other's  conditions  and  make
decisions accordingly [21].

John  von  Neumann  (1944)  [22]  discussed  Game
Theory,  which  dates  back  to  Babylon,  as  an  economic
study in his book “Game Theory and Economic Behavior”.
After  that,  John  Nash's  articles  on  the  definition  of
equilibrium  laid  the  foundations  of  modern  non-
cooperative  games  in  the  early  1950s  [23].  Before  the
1970s,  studies  were  carried  out  by  assuming  that
individuals were fully knowledgeable about all options. By
the  1970s,  game  theory  studies  were  developed
considering that information is incomplete and rationality
is limited [24].

In  economics,  all  participants  aim  to  maximize  their
profit.  Supply-demand  equality,  a  state  in  which
participants do not tend to change their behavior without
any  external  influence  is  called  the  concept  of  market
equilibrium.  The most  widely  used equilibrium theory  in
strategic structures is the Nash equilibrium, developed by
John Nash [23]. In the Nash equilibrium, after both players
see the other player's strategy, they will not regret their
choice  and  will  continue  this  strategy  if  they  have  a
chance  to  play  again  [25].  The  profit  function  of  each
player is given in Eq. (10).  In this equation, i  represents
player i's profit, and s represents the strategies of players.

(10)

This  theory  defines  decisions  as  responses  to  the
game. The best response functions are found by taking the
derivative of each player's profit function and equalizing it
to  zero  (Eq.  11).  With  this  process,  it  is  aimed  to
determine the extremum point of response, and this point
is named Nash equilibrium. At this point, all players make
the decision that they are satisfied with. bi represents the
player i's best response, and αi represents player i's action
that affects the strategy,

(11)

The Nash equilibrium is searched for a point where all

Tij = Tij
0 *Fi* Fj*Aj*Bj   

Tij =ki*Oi*(e-LV
j-1 – e –LV

j) 

πi(s1,…sn)     

Tij = Tij
0 *Fi* Fj*

!"#!
!
!"∗!"#!

!

bi(s-i) = !!!(!!,…!")
!"#

 = 0    i=1,2,…n
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players determine their decisions, and they do not want to
make any changes. On the other hand, Cournot is a model
based  on  quantity  competition  for  participant  decisions
and  was  developed  long  before  the  concept  of  Nash
equilibrium. Following Nash, Cournot is reinterpreted and
has become an integral part of economic analysis [26]. In
the  Cournot  –  Nash  model,  a  homogeneous  product  is
produced by n number of companies. The production value
of  each  firm  that  makes  its  own  profit  maximum  is
determined  by  the  Nash  equilibrium.

Profit (π) is found by subtracting the total cost from its
total  income  (Eq.  12).  The  cost  of  producing  for  the  i.
company is expressed as ci(qi).  Where, ci  represents unit
cost  and  qi  is  the  production  value.  Moreover,  P(Q)  (Q=
q1+q2+…qn)  represents  the  market  price,  which  is
determined  by  the  demand  for  goods  and  the  total
production  amount  of  the  companies.  This  price  has  an
inverse  demand  function,  if  the  company's  output
increases,  the  price  decreases  (p=  a-Q).

(12)

Similar  to  Nash  equilibrium,  the  best  response
function can be calculated by taking the derivative of the
gain  according  to  the  strategy  action  (here,  strategy  is
determined  by  production  value  -q).  Company  i’s  best
response  given  Eq.  (13).

(13)

Nash  equilibrium is  at  the  intersection  of  these  best
response functions.

2.3.1. Game Theory in Transportation
Game theory applications have a wide range of usage

areas, from strategic questions on war to animal behavior
in  competitive  situations,  to  hall  games,  and  even
elections.  Likewise,  it  has  been  used  many  times  in  the
field of transportation. Zhang et al. [27] classify the game
theory studies in transportation into two types: Macro and
micro  levels.  In  macro-level  transportation  games,  the
analysis  focuses  on  complicated  and  broad  situations
involving  many  players.  In  micro-level  transportation

games, the focus is only on a limited circumstance where
only a few players exist.

Macro-level  games  can  be  between  passengers  and
authorities,  between  passengers  and  passengers,  or
between authorities and authorities. Examples of macro-
level games are determining road and parking fees, urban
traffic  demand,  guiding  driver  reactions,  and  others
[28-50].

The  studies  conducted  at  the  micro-level  usually
assessed  a  part  of  an  overall  situation.  Consequently,
games  among  authorities  can  not  be  included  in  micro-
level games. Traffic Signal Strategies, Plane collisions, and
Pedestrian  as  well  as  vehicle  conflicts  are  examples  of
micro-level games [51-64].

3. METHODS
3.1. Proposed Model; Game Distribution Model

In this study, game theory was used to distribute the
production  and  attraction  values  obtained  from the  first
step  of  the  classical  four-step  model.  In  the  proposed
methodology,  production  and  attraction  values  for  each
TAZ are distributed with a game. Each TAZ is assumed to
be a player.  Games between TAZ pairs are shown in the
form of an O/D matrix in Table 1. All cells in the center of
the n x n matrix represent the number of trips (qij)  from
TAZi  (starting point  of  the  trip  -origin)  to  TAZj  (the  final
point  -  destination).  This  matrix has n production games
and n attraction games.

In every game created for attractions, (shown in red in
Table  1),  it  is  assumed  that  all  TAZs  traveling  to
destination  TAZ  are  players  aiming  to  maximize  their
share of total attraction profit. Players (TAZs) determine
the number of trips they can send to optimize their profit,
with  the  number  of  trips  from  TAZi  to  TAZj  (qij)  being
strategy actions for players.  The sum of the qij  gives the
attraction value (∑qij=Q). The profit of the trip from i to j
(πij) is calculated by subtracting the total cost (cij) from the
total utility (u(Q)). It is shown in Eq. (14).

(14)

Table 1. O/D matrix and games.

πi = qi*p(Q)- ci(qi)      

bi(qn)= 1/2*( a-ci-q-i) 

πij = qij*u(Q)- cij(qij)

Game 1  Game 2             game n Attraction games 

1 2 .. N Origin (Oj)
b /a a1 a2 .. an

1 b1 q11 q12 q1n O1

2 b2 q21 q22 q2n O2

: : :

N bn qn1 qn2 qnn On

Destination (Di) D1 D2 .. Dn

Production 
games

game n+1
game n+2
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The concept of utility seen in Eq. (14) is created by an
analogy with the concept of price in the Cournot – Nash
model.  Utility  motivates  passengers  to  make  trips;  it  is
inversely proportional to demand. As the number of trips
increases,  the  utility  decreases.  Utility  depends  on  the
total  number  of  trips,  trip  origin,  and  destination
characteristics.  It  is  shown  in  Eq.  (15).

(15)

aj: A parameter that depends on destination TAZ
bi: A parameter that depends on the origin TAZ
u: The utility per trip
Q: Total number of trips (∑qij)
As an advantage, this profit approach allows the use of

not only travel cost but also travel time or marginal cost to
determine total  cost.  cij  function can be replaced with  tij

(travel time) or a combination of factors. Even more, other
variables,  such  as  the  employment  or  population  of  the
destination TAZ can be added to this equation.

According  to  the  game  theory,  the  best  response
function  is  calculated  after  the  profit  function  is
determined. The best response function can be calculated
by taking the profit's derivative according to the strategy
action (action-the number of trips from TAZi to TAZj (qij)).
In  the  case  of  n  players,  there  are  n  best  response
functions  for  every  attraction  (Eq.  16).

(16)

With the steps and approach mentioned above, n game
has  been  developed  for  n  attraction  values,  and  n  best
response (bri) has been determined for each attraction (a
total of n2 best responses, Eq. (16)).

Production games are developed in the same way and
shown  in  blue  in  Table  1.  TAZs,  that  have  at  least  one
traveler from that TAZ, are players, and they aim to get a
share of the total production. The total profit for each TAZ
is,  again,  inversely  proportional  to  demand;  if  the  total
number of trips increases, the utility decreases (Eq. 14).
Accordingly, n game has been developed for n production
values and n best responses (bri) has been determined for
each production (a total of n2 best response, Eq. (17)).

(17)

As  a  result  of  the  construction  of  attraction  and
production  games,  2*n2  best  response  functions  are
formulated.  The equilibrium point  can be determined by
solving these equations together. Additionally, because of
the complexity of equations, these best response functions
can  be  designed  as  a  minimization  problem,  and  this
problem  can  be  solved  using  algorithms  such  as  the

Generalized  Reduced  Gradient  (GRG)  Nonlinear  Solving
method and others. Game Distribution Model, formulated
as a minimization problem, is presented below.

Variables: qij, ai ve bj (n*n+ 2n variable)
Objective: Min ε
ε= (∑ εn)^1/2
b1*2q1i+b2*q2i+ …..+bn *qni - ai-c1i = ε1

b1*q1i+ b2*2q2i+ ….+ bn*qni - ai–c2i = ε2

…
…
bj*qj1+bj*qj2+ …..+bj* 2qjn - an–bn*cjn =εn

Subject to: qji >0, ai>0, bj>0
In the minimization problem mentioned above, due to

the  nonlinearity  of  the  best  response  functions,  the
obtained results are local optimums. Therefore, if there is
a preliminary estimate, the minimization problem can yield
a  better  local  optimum.  In  the  proposed  model,  a
preliminary estimation does not exist. Thus, an algorithm
that accounts for no initial estimates was developed (Fig.
1).

The steps of the algorithm are as follows:
Step  1:  Set  all  variables  (qij,  ai,  bj)  to  0  (there  is  no

preliminary estimation.)
Step 2: Solve the minimization problem, then calculate

the error (ει) and set vari+1.

Step  3:  Compare  the  recent  error  (ει)  with  the
previous error (εi-1) to see if any improvement is achieved

Step 4: Any improvement? Update all variables (qij, ai,
bj) and error (ει), then go to Step 2.

Step 5:  Stop.  εi-1  is  the final  error,  and vari  are final
variables.

3.2.  Performance  Measures  and  Goodness  of  Fit
Statistics

The  performance  and  success  of  the  proposed
methodology can be assessed by using various measures.
In  this  study,  several  different  goodness-of-fit  statistics
were  selected  for  performance  measurement  and  model
evaluation.  Root  Mean  Squared  Error  (RMSE)  and  the
Coefficient of Determination (r2) were determined as the
micro-level goodness of fit parameters, Mean Travel Cost
Error  (MTCE)  and  Trip  Length  Distribution  Root  Mean
Squared  Error  (TLD  RMSE)  were  determined  as  macro-
level goodness of fit parameters.

The  RMSE  is  one  of  the  most  accurate  comparative
measures  of  model  performance  [65].  RMSE  represents
the  differences  between  predicted  values  and  observed
values with the quadratic mean. It serves to aggregate the
magnitudes  of  the  errors  in  predictions  for  various  data
points into a single measure. When the RMSE values are
lower  correspondence  is  higher,  and  0  would  indicate  a
perfect fit to the data. As the RMSE value gets smaller, it

u(Q) = aj-biQ

b1*2q1i+b2*q2i+ …..+bn *qni = ai -c1i 

b1*q1i+ b2*2q2i+ ….+ bn*qni = ai – c2i 

…                                              Best Response Functions for Attraction

b1* q1i+ b2*q2i+ ...+ bn*2qni = ai – cni 

bj*2qj1+ bj*qj2+ …..+ bj*qjn =a1 – cj1 

bj*qj1+bj*2qj2+ …..+ bj*qjn = a2 – cj2 

                             …                                              Best Response Functions for Production

             bj*qj1+bj*qj2+ …..+bj* 2qjn = an – cjn 



A Game Theory Approach to Trip Distribution Model 7

Fig. (1). Estimation algorithm.

is determined that the model estimation gets closer to the
observed values. The effect of each error on the RMSE is
proportional  to  the  squared  size  of  the  error;  therefore,
larger  errors  have  a  disproportionately  large  impact  on
the  RMSE.  Accordingly,  the  RMSE  shown  in  Eq.  (18)  is
sensitive to outliers.

(18)

In  Eq.  (18),  Tij
o  represents  the  number  of  observed

trips, and Tij represents the number of trips obtained as a
result  of  the  model.  n  represents  the  total  number  of
values  compared.

The coefficient of determination (r2) is another widely
used measure of model performance. It is a measure of the
linear association between observed and predicted values.
The r2 value is lies in the range of 0-1. As the value gets
closer to 1, the similarity of the model to the observation
values  increases.  It  has  been  determined  that  in  some
special  cases,  the  r2  statistic  may  show  insensitivity  to
error. Therefore, the interpretation of r2 measures should
be done with caution [65]. It is presented in Eq. (19).

(19)

In this equation, Tij
o represents the number of observed

trips, To represents the average of these observed values,
and Tij represents the number of trips obtained as a result
of the model.

Mean  Travel  Cost  Error  (MTCE)  is  a  macro-level
performance measure in trip distribution modelling. It is
also  employed  as  a  standard  calibration  procedure  for
years  [66].  In  the  MTCE,  in  addition  to  traffic  values,
travel  costs  are  also  used  (Eq.  20).  For  model  and  real
trips, the trip cost per trip is calculated, and the MTCE is
determined  by  calculating  the  difference  between  these
values. The calculated value is considered as the deviation
value, and the closer the deviation value is to 0, the more
realistic the model gives results, regardless of the sign of
the deviation.

(20)

In Eq. (20), Tij
o,  To,  and Tij  represent the same values

used  in  Eq.  (19).  In  addition,  is  the  total  number  of
observed  trips,  is  the  total  number  of  estimated  trips.

Finally,  The  Trip  Length  Distribution  (TLD)  is
determined by calculating the frequency distributions  of
the  travel  time  or  costs  for  the  observed  values.  It  is  a
macro-level measure for trip distribution modelling, and is
used  both  in  the  calibration  and  the  model  evaluation
phases.  The  TLD  obtained  by  calculating  the  number  of
trips  within  the  specified  ranges  is  expected  to  fit  the

  RMSE = 
(T!"! − 𝑇!")!!"

𝑛

r2 = 1 - 
(!!"
! !!!")!!"

(!!"
! !!!)!!"

MTCE = (
(!!"
! ∗!!")!"

!!!"
) - (

(!!"∗!!")!"

!!"
)        
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right-skewed normal distribution in the ideal situation. It
is assumed that the TLD graph drawn with the predicted
values will remain the same. Trip Length Distribution Root
Mean Squared Error (TLD RMSE) measures the root mean
squared differences between observed and estimated trip
length frequency distributions associated with usual time
intervals.

3.3. Empirical Evaluation
In this paper, the model described in Section 3.1 was

evaluated with real-world household survey data by using
the  actual  trip  information  collected  for  the  Eskisehir
Master Plan [67]. Eskişehir is a medium-sized city located
in  the  inner  parts  of  Turkey.  The  network  created  with
TAZs that have sufficient data in the household survey is
shown in Fig. (2). As a part of the master plan studies [67]
TAZs were determined, and data were collected from more
than 30000 households in the 72 TAZs.

In  the  empirical  evaluation,  an  actual  O/D  matrix  is
extracted  from  the  survey  and  this  actual  matrix  is  re-
estimated  by  using  both  the  proposed  method  and  the
gravity model. Afterward, for both methods, convergence
to  the  actual  values  is  investigated  and  the  results  are
compared by using the measures given in Section 3.2. For

computational  simplicity,  this  practice  is  performed  by
using  only  a  subset  of  72  TAZs.  The  subset  contains  5
TAZs  selected  for  different  cases.  In  this  empirical
analysis,  5  cases  are  selected:  (a)  neighboring TAZs,  (b)
distinct TAZs, (c) TAZs with high travel demand, (d) TAZs
with low travel demand, and (e) randomly selected TAZs.
Randomly  selected  TAZs  contain  arbitrarily  selected  5
TAZs  while  neighboring  TAZs  include  5  TAZs  sharing
administrative borders. On the other hand, separate TAZs
are defined as TAZs that do not have any administrative
borders with each other. The threshold between high and
low demand is assumed to be 100 trips/day. Accordingly,
for the TAZ group with low demand, the number of trips
for every TAZ in the group is less than 100. Parallelly, for
the high-demand TAZ group, the number of trips for every
TAZ is more than 100.

For all TAZ subsets, a 5x5 O/D matrix was established
by using the number of trips obtained from the household
surveys. Here, the travel times and costs were determined
from the network.

Furthermore, for intra-zonal trips, times and costs are
assumed to be zero for computational simplicity. The plots
of the cases and TAZs are given in Fig. (3).

Fig. (2). Eskişehir trafic analysis zones (TAZ) [67].

(a)Location of Eskisehir in Turkey
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(a)Location of Eskisehir in Turkey 

(b) Eskisehir TAZs 
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Fig. (3). The plot of example cases.
Note: Selected TAZs are colored.

Travel  times  and  travel  cost  values  for  the  example
cases  are  provided  in  Table  2.  Using  these  values,
empirical  examples  were  calculated  employing  both  the
game  distribution  model  and  the  gravity  model.  The
resulting  pairs  were  then  compared  using  the  measures
described in Section 3.2.

3.3.1. Calculation with Game Distribution Model and
Gravity Method

In  the  application  of  the  proposed  model,  which  is
called the game distribution model, two different types of
games were developed as stated in Section 3.1: attraction
and  production.  All  best  response  functions  were
determined separately with Eqs. (16 and 17). and solved
together with the minimization problem defined in Section
3.1.

For  each  case,  all  TAZs  have  their  own  attraction
games, and there are 5 gamers. Similar to attractions, all
TAZs  have  their  own production  games  as  well.  The  final
minimization problem contains 25 best response functions
for  attraction  games  and  25  best  response  functions  for
production  games.  The  determined  minimization  problem

was solved using the algorithm given in Fig. (3). The results
provide  the  total  production  and  total  attraction  values
without the need to apply balancing factors. This is one of
the most significant advantages of the proposed model.

The  Gravity  model,  which  was  introduced  in  Chapter
2.2,  was  used  as  the  benchmark  model.  Trips  were
calculated  with  Eq.  (11),  and  the  exponential  deterrence
function  that  was  shown  in  Eq.  (2)  was  selected  for  the
deterrence  function  (f(cij)).  Many  studies  have  suggested
statistical  or  numerical  computational  procedures  to
calibrate the β value in the deterrence function. One of the
simplest procedures is to run the model for a wide range of
β  values,  and  choose  the  best  β  value  that  optimizes  a
predetermined goodness-of-fit  statistic  [68].  In  this  study,
for  this  purpose,  O/D  matrices  are  estimated  using  all
possible β values within the range of 0 and 4. Next, the TLD
of every calculation for each β was determined, and every
step observed and estimated was compared by using RMSE.
The matrix calculated by this β value was determined as the
O/D Matrix of the Gravity Model. β optimization was done
for  all  samples,  and  O/D  matrices  were  calculated  with
these  β  values.

e) Empirical Example 5 TAZ  
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Table 2. Travel time (min) and travel cost (TL) values for example cases.

Neighboring 5 TAZ

- 35 36 37 47 48

O/D time cost time cost time cost time cost time cost

35 0 0 10.55 2.66 7.83 0.69 8.44 2.16 11.38 4.07
36 10.58 2.8 0 0 6.74 0.83 8.27 0.91 8.31 1.6
37 7.83 0.69 6.74 0.83 0 0 9.56 1.07 8.56 1.61
47 10.21 2.2 8.41 1.02 9.67 0.85 0 0 9.24 2.44
48 12.82 2.49 8.21 1.53 8.98 1.73 11.69 1.98 0 0

Distinct 5 TAZ

- 11 32 35 60 72

O/D time cost time cost time cost time cost time cost

11 0 0 11.56 1.86 12.89 3.81 9.54 1.52 5.96 0.65
32 12.24 1.99 0 0 18.32 6.56 7.74 1.31 13.41 3.59
35 11.21 3.75 16.64 6.09 0 0 14.31 5.09 9.77 3.26
60 9.65 1.57 7.96 1.74 16.69 5.37 0 0 10.21 1.73
72 5.96 0.65 12.38 3.63 12.41 3.44 10.5 2 0 0

High trip demand 5 TAZ

- 13 14 31 44 47

O/D time cost time cost time cost time cost time cost

13 0 0 8.83 1.5 11.72 2.54 11.77 4.16 10.92 3.91
14 8.83 1.5 0 0 13.52 2.83 14.95 5.26 14.1 5
31 11.79 2.53 13.52 2.83 0 0 10.97 3.34 9.69 2.6
44 12.37 4.26 15.55 5.35 9.56 3.06 0 0 6.27 0.77
47 11.26 3.99 14.44 5.08 9.52 2.55 6.07 0.83 0 0

Low trip demand 5 TAZ

- 10 14 16 39 52

O/D time cost time cost time cost time cost time cost

10 0 0 4.76 0.53 5.36 0.59 15.92 3.02 6.04 0.71
14 4.76 0.53 0 0 7.32 0.98 16.09 3.5 6.81 0.98
16 5.36 0.59 7.27 0.96 0 0 17.05 5.55 7.39 1.12
39 16.23 3.57 16.44 3.71 16.7 5.49 0 0 14.36 3.27
52 5.87 0.7 6.08 0.79 7.33 1.11 13.87 2.7 0 0

Randomly selected TAZ TAZs

- 13 31 45 66 72

O/D time cost time cost time cost time cost time cost

13 0 0 11.72 2.54 5.65 0.80 11.77 4.02 11.41 3.22
31 11.79 2.53 0 0 11.47 2.48 17.65 8.28 8.86 2.78
45 5.65 0.80 11.35 2.48 0 0 13.83 4.51 9.79 1.45
66 12.06 4.09 17.88 8.31 13.97 4.39 0 0 15.40 5.82
72 10.22 3.66 10.16 2.96 9.9 1.41 14.29 6.29 0 0

Table 3. Game distribution model and gravity model O/D matrix for neighboring 5 TAZ.

O/D 35 36 37 47 48

- Observed GDM
Gravity Observed GDM

Gravity Observed GDM
Gravity Observed GDM

Gravity Observed GDM
Gravity

35 250 272
211 1 0

20 22 15
33 74 62

75 2 0
9

36 2 2
4 39 35

29 7 11
7 8 0

14 1 9
3

37 51 46
79 88 83

77 312 306
283 107 139

107 16 0
29

47 18 7
17 5 18

19 11 0
14 268 280

246 2 0
9

48 6 0
16 42 39

31 10 30
26 24 0

38 116 129
87
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The Game Distribution Model (GMD) and gravity model
O/D matrices for all example cases are given in the tables
below.  Table  3  contains  the  calculated  O/D  matrix  for
neighboring TAZs. Similarly, Tables 4, 5, 6, and 7 include
the model  results  for  discrete,  high trip  demand,  low trip
demand, and randomly selected cases, respectively.

4. RESULTS
The Game Distribution Model (GMD) and the Gravity

Model were solved for each case, and then each model’s

results  were  compared  with  goodness-of-fit  statistics
described in Chapter 3.2. The results are shown in Tables
8 and 9.

According to the comparison of micro-level goodness-
of-fit statistics given in Table 5, r2 values for both models
are over 0.80,  and the results are statistically sufficient.
When analyzing the results from the perspective of RMSE,
the  Game  Distribution  Model  outperforms  the  Gravity
Model in two specific cases, while overall, the results for
both models are relatively very close.

Table 4. Game distribution model and gravity model O/D matrix for discrete 5TAZ.

O/D 11 32 35 60 72

- Observed GDM
Gravity Observed GDM

Gravity Observed GDM
Gravity Observed GDM

Gravity Observed GDM
Gravity

11 56 57
55 4 6

6 6 10
9 3 9

9 33 19
24

32 0 4
5 79 62

61 1 0
3 4 21

13 4 0
6

35 15 0
12 3 0

4 250 230
235 7 0

7 4 49
22

60 16 20
20 12 44

29 18 0
10 171 137

142 7 24
25

72 51 57
47 4 0

14 12 47
28 5 22

20 251 206
222

Table 5. Game distribution model and gravity model O/D matrix for high trip demand 5 TAZ.

O/D 13 14 31 44 47

- Observed GDM
Gravity Observed GDM

Gravity Observed GDM
Gravity Observed GDM

Gravity Observed GDM
Gravity

13 317 252
284 15 106

41 42 18
34 26 20

26 22 26
36

14 72 171
95 529 460

471 31 46
46 13 0

27 32 0
38

31 54 42
50 8 0

30 714 618
651 58 84

57 40 130
86

44 25 0
41 9 0

18 58 137
89 492 438

474 194 203
156

47 23 26
22 5 0

10 16 42
39 59 106

61 268 198
239

Table 6. Game distribution model and gravity model O/D matrix for low trip demand 5 TAZ.

O/D 10 14 16 39 52

- Observed GDM
Gravity Observed GDM

Gravity Observed GDM
Gravity Observed GDM

Gravity Observed GDM
Gravity

10 44 28
43 0 8

3 4 16
2 0 0

0 12 9
11

14 1 3
1 16 7

14 0 2
0 0 0

0 0 3
2

16 0 11
1 2 5

0 38 22
39 1 0

0 3 6
3

39 0 0
0 0 0

0 0 0
0 43 44

44 1 0
0

52 0 0
0 0 0

0 0 0
0 0 0

0 2 1
2
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In this study, two macro-level goodness-of-fit statistics
are calculated, and the results are shown in Table 6. The
Game Distribution Model has better results in almost all
cases according to the MTCE measure. For the TLD-based
comparison  at  the  macro  level,  the  TLD  graphics  of  all
predictions  with  both  models  were  prepared.  Next,  TLD
RMSE values  were  calculated  by  referring  to  the  actual
and predicted TLDs. When the last two columns in Table 6
are  considered,  in  2  of  5  cases,  the  proposed  model
provided  better  results.  This  should  be  considered  a
success for The Game Distribution Model, while the basis
of calibration in the Gravity Model is TLD. In Fig. (4), the
TLD  graphics  for  all  example  cases  are  plotted.  All
graphics  (Fig.  4a-e)  show  that  both  models  give  results
close  to  the  observed  values.  In  the  game  distribution

model,  unlike  gravity  theory,  TLD  values  are  not  used
directly. Despite this, the closeness of the results can be
considered a success for the proposed model.

5. DISCUSSION
The general purpose of this study was to estimate the

OD matrices with the Game Theory and contribute to the
literature  by  representing  its  potential  use  in  the  Trip
Distribution Modelling. After thorough investigations, the
present  study  demonstrates  the  applicability  of  the
proposed  model,  with  its  outputs  yielding  better  or
comparable  goodness-of-fit  statistics  compared  to  the
classic  Gravity  Model.  This  indicates  that  the  Game
Distribution  Model  can  serve  as  a  replacement  for  the
Gravity  Model  in  the  Trip  Distribution  step  of  the  Four-
Step Travel Demand Model.

Table 7. Game distribution model and gravity model O/D matrix for randomly selected 5 TAZ.

O/D 13 31 45 66 72

- Observed GDM
Gravity Observed GDM

Gravity Observed GDM
Gravity Observed GDM

Gravity Observed GDM
Gravity

13 317 332
385 42 41

1 4 2
1 16 6

1 9 7
0

31 54 47
0 714 764

811 1 0
0 11 0

0 31 0
0

45 3 4
7 6 0

1 17 20
19 0 0

0 1 3
0

66 10 0
0 14 0

0 0 0
0 144 169

169 1 0
0

72 25 26
17 87 58

52 0 0
2 4 0

4 251 283
293

Table 8. Comparison of micro-level goodness-of-fit statistics.

-
r2 RMSE

Game Distribution Model Gravity
Model Game Distribution Model Gravity Model

Neighboring 0.98 0.98 12.57 15.85
Distinet 0.94 0.98 20.00 12.48

High trip demand 0.94 0.99 51.13 26.34
Low trip demand 0.80 0.99 6.21 1.06
Random selected 0.99 0.98 16.56 31.03

Note: Bold values represented better results.

Table 9. Comparison of macro-level goodness-of-fit statistics.

-
MTCE TLD RMSE

Game Distribution Model Gravity
Model Game Distribution Model Gravity Model

Neighboring 3.54 -9.12 0.02 0.04
Distinet -6.91 -8.77 0.06 0.05

High trip demand -19.39 -27.54 0.06 0.03
Low trip demand -0.92 0.30 0.13 0.01
Random Selected 21.17 33.00 0.03 0.06

Note: Bold values represented better results.
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The main advantages of the Game Distribution Model
are as follows:

The  proposed  model  directly  uses  data  from  household
surveys or networks such as production attraction values,
travel  costs,  etc.  However,  the  Gravity  Model  needs
different  parameters,  like  the  generalized  travel  cost
function.
The  proposed  model  does  not  use  any  correction
coefficients  (socio-economic  adjustment  factors-  K)  that
account  for  the  difference  between  actual  results  and
predictions used in the Gravity Model.
The  proposed  Model  has  flexibility  in  defining  the  trip
utility.  The best response functions can accommodate a

variety  of  variables  such  as  employment  for  home base
work trips or shopping mall area in destination TAZ for
non-home base trips etc.
The  model  also  has  flexibility  about  the  cost  function;
travel time, travel cost, or any deterrence parameter can
be used in the proposed model.

The  most  important  advantage  of  The  Game
Distribution Model is that the model uses the most basic
Game Theory approach (static and complete information)
but  can  be  improved  by  incorporating  the  concept  of
incomplete information in future studies. This will provide
a  more  realistic  approach  instead  of  assuming  that  the
passengers  have  accurate  information  about  all  TAZs,
similar  to  classic  distribution  models.
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Travel Time (min)
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Fig. (4a-e). TLD comparison for example cases.
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CONCLUSION
Besides  these  advantages,  the  complexity  of  the

application can be mentioned as the main disadvantage of
the  Game  Distribution  Model.  The  Gravity  Model  is  still
simple  and  efficient.  Considering  advancements  in
programming,  this  disadvantage  can  be  addressed  by
solving the minimization problem using suitable software
solutions.

Further  research  can  explore  designing  some  new
features with additional utility or cost variables,  such as
zonal  land  use  variables  or  a  geographical  barrier.  The
model  can  be  examined  in  examples  with  different
numbers  of  TAZs  and  can  be  recommended  for  certain
scales.  It  can  be  investigated  to  find  out  which  model
might  be  used  for  different  sized  zones.
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