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Abstract:
Background: Accurate knowledge of passenger volumes is critical for enhancing public transportation, particularly
in  Open (without  barriers)  Mass  Transit  (OMT)  systems where  traditional  counting methods  may be  inadequate.
Automatic  Passenger  Counting  (APC)  systems  offer  a  reliable  solution,  yet  their  performance  in  OMT  remains
underexplored. Additionally, a lack of a comprehensive framework for evaluating APC accuracy has limited a full
understanding of their effectiveness.

Objective:  This  study  proposes  an  integrated  framework  to  evaluate  the  accuracy  of  APC systems  in  OMT.  The
practical effectiveness of this framework is demonstrated through a real-world case study conducted on the Brescia
Metro  (Italy),  showcasing  how  user-friendly  outputs  can  highlight  potential  areas  for  improving  the  efficient
management  of  APC  systems.

Methods: The framework is divided into two blocks. Block 1 selects representative stations and collects passenger
data through manual  counts and APC systems.  Pre-processing ensures the synchronisation of  both data sources.
Block 2 analyses APC performance at aggregated and disaggregated levels. The aggregated analysis uses several
error  metrics  to  assess  overall  accuracy,  with  confidence  intervals  identifying  potential  systematic  errors.  The
disaggregated analysis examines station-specific performance.

Results: The Brescia Metro’s APC system demonstrated high reliability, with slight overestimations for both entering
(+0.52%) and exiting (+1.41%).  Errors were classified as random, indicating no need for  corrective coefficients.
Station-specific analyses revealed that simpler layouts and lower passenger volumes yielded higher accuracy. The
performance metrics showed consistency with literature findings but highlighted unique error patterns influenced by
open environments.

Conclusions: This study offers practical insights for transportation authorities (TAs), public transport companies
(PTCs), and APC producers. It encourages TAs and PTCs to optimise service using real-time passenger flow data from
APC.  It  also  advises  producers  to  customise  APC systems for  stations  with  complex  layouts  or  higher  passenger
density.  Future  research  should  enhance  APC  accuracy  using  advanced  analytical  methods,  integrate  emerging
technologies  such  as  Wi-Fi  and  cellular  tracking,  include  more  complex  case  studies,  and  address  data  security
concerns.

Keywords: Accuracy evaluation, Automatic passenger counting, Error metrics, Intelligent transport systems, Open-
access transit, Mass transit.
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1. INTRODUCTION
Public  transportation  systems  are  vital  components  of

urban  mobility,  requiring  effective  planning  and  manage-
ment  to  ensure  efficient  and sustainable  operations  [1-4].
Accurate knowledge of passenger volumes is essential for
both service providers and users [5, 6]

As for service providers, understanding the dynamics of
demand  enables  the  optimisation  of  fleet  deployment,
reduction  of  unnecessary  operational  costs,  and  enhance-
ment of passenger satisfaction. For instance, implementing
operational  strategies  such  as  short-turning  and  limited-
stop services can minimise the number of transit  vehicles
required,  thereby  lowering  costs  and  improving  service
efficiency  [7].

As for users, real-time information on vehicle occupancy
can influence travel decisions, encouraging greater use of
public  transportation  while  alleviating  urban  congestion
and pollution. Providing citizens with accurate information
on traffic conditions can encourage journeys at times of low
congestion and increase the uptake of public transport [8].
Additionally,  offering  real-time  information  on  vehicle
occupancy has the potential to make public transport more
attractive,  contributing  to  fewer  private  vehicles  on  the
road  and  leading  to  lower  congestion  levels  and  reduced
pollution [9].

Estimating  passenger  volumes  may  be  addressed  by
counting methods that can be categorised into manual and
automatic  ones  [6].  Manual  methods  include  ride-checks
and point-checks  (without  passenger  participation)  or  the

analysis of ticket sales (with passenger participation). How-
ever,  these  methods  have  significant  limitations.  Obser-
vation-based approaches are time-consuming and resource-
intensive, while ticket-based methods often underestimate
volumes due to fare evasion or multiple boardings [10-12].

To  address  these  limitations,  Automatic  Passenger
Counting  (APC)  systems  have  become  a  focal  point  of
interest within the Intelligent Transportation Systems (ITS)
community. Since their introduction in the mid-1970s, many
public transport agencies in the United States and Canada
have adopted APC systems [13-16] with subsequent advan-
cements  and  implementation  in  Europe.  These  systems
provide a cost-effective and reliable alternative to manual
counting methods.

Over  time,  a  diverse  array  of  APC  systems  has  been
developed,  broadly  categorised  into  traditional  and  inno-
vative technologies. Traditional APC methods rely on tech-
nologies such as infrared sensors, pressure mats, and video
recognition  [17].  Recent  advancements  in  methodological
facets,  including  artificial  intelligence  (AI)  and  deep  lear-
ning (DL), have spurred the development of innovative APC
technologies  such  as  Wi-Fi  and  cellular  tracking  systems
[18].

The heterogeneity of APC technologies is evident in the
literature. Table 1 summarises key studies on APC systems,
including technologies, transport mode, number of vehicles
tested,  sample  size,  accuracy  evaluation  metrics,  and
results. Table 1 is briefly discussed by focusing on each APC
technology separately.

Table 1. Summary of APC technologies and key findings.

Authors,
Year Ref. Location APC

Technology
Transport

Mode
Vehicles
Tested

(#)
Sample size

(Observations/Duration)
Accuracy

Evaluation
Metrics

Results

Strathman et
al. (2005) [19] Oregon, USA Infrared Train 1 144 (observations)

Mean differences
between APC and
manual counts;

Confidence
intervals

Underestimates
boarding (-9%);

overestimates alighting
(+10%)

Chen et al.
(2008) [20] Kaohsiung,

Taiwan Video Bus 1 NA
Percentage of

correctly identified
counts

92% Accuracy
(laboratory)

Olivo et al.
(2019) [6] Cagliari, Italy Infrared Bus 1 950 (observations)

Confidence
intervals, Mean

absolute error; Root
mean squared

error,

77% Accuracy;
96% accuracy with a

tolerance of ±1
passengers.

underestimates both
boarding and alighting;

systematic error for
boarding.

Moser et al.
(2019) [21] Sydney,

Australia
Multiple (video,
wi-fi, infrared,

pressure)
Bus 2 NA

Percentage of
correctly identified

counts

Video: 57%; wi-fi:
16%-75%; infrared:
55% pressure: 83%;

Nitti et al.
(2020) [18] Cagliari, Italy Wi-fi Bus 1 21 (observations) Total number of

counts comparison
High accuracy; random

errors
Haig et al.

(2021) [22] Pittsburgh,
USA Cellular Bus 12 246 (observations) Linear regression

model 79% Accuracy

Kim et al.
(2022) [23] Taegu, South

Korea Video Bus 1 100 (observations) Average precision 99% Accuracy (ideal
conditions)
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Infrared-based systems rely on temperature variations to
detect passenger movement and provide moderate accuracy.
A research [19] evaluated an infrared-based APC system on
trains  and  noted  discrepancies,  with  underestimation  of
boarding  and  overestimation  of  alight  attributed  to  pass-
enger  behaviour  and  installation  differences.  Similarly,  a
study  [6]  reported  an  overall  77%  accuracy  rate  for  an
infrared system installed on a bus, though the system strug-
gled  with  crowded  conditions  and  exhibited  a  systematic
underestimation of passenger boarding. These percentages
increase  significantly  when allowing  for  a  tolerance  of  ±1
passenger: the weighted averages show a 95% accuracy rate
for boarding passengers and 97% for alighting passengers,
respectively.

Pressure-based systems offer a distinct approach by esti-
mating  passenger  numbers  based  on  weight  variations.
These systems are frequently used in buses, as evidenced in
a research [24], which observed excellent accuracy in esti-
mating  the  total  number  of  onboard  passengers  (with  a
relative  error  ranging  from  1%  to  4%).  However,  these
systems are limited in their ability to differentiate between
boarding and alighting passengers, reducing their suitability
for applications requiring a detailed flow analysis.

Video-based systems, which utilise camera installations
and advanced image recognition algorithms, represent an-
other  significant  APC  technology.  Their  potential  is  high-
lighted in various studies (e.g., [20, 25]). For example, the
research  of  [20]  demonstrated  that  video-based  systems
achieved a 92% accuracy rate under laboratory conditions,
but  performance  decreased  in  real-world  settings  due  to
challenges such as  variable  lighting and passenger occlu-
sions.  A  study  [25]  further  compared  commercial  video
systems with lower-cost alternatives, finding that the latter
outperformed the former in terms of accuracy during field
trials (72% ÷ 74% vs. 53% ÷ 55% accuracy). Recent advan-
cements  in  deep learning,  as  explored in  a  research [23],
suggest  that  facial  recognition  algorithms  could  further
improve  APC  accuracy,  achieving  a  99%  success  rate  in
ideal  conditions.  However,  these  advancements  remain
largely  untested  in  complex  and  crowded  environments
such  as  metro  stations.

Emerging technologies such as Wi-Fi and cellular trac-
king  systems  represent  innovative,  indirect  methods  of

passenger counting. They estimate passenger numbers by
monitoring  signals  emitted  by  personal  devices.  Different
studies  [18,  22]  demonstrated  the  promise  of  these  met-
hods, reporting accuracies of up to 79% and reliable trac-
king of passenger flow. However, the reliance on personal
device data introduces challenges, including overestimation
(e.g.,  passengers  carrying  multiple  devices)  or  underesti-
mation (e.g., passengers with no devices). Another research
[25] examined the application of Wi-Fi-based APC systems
at  bus  stops  and  observed  overestimation  biases,  empha-
sising  the  need  for  algorithmic  calibration  to  improve
reliability.

Despite the advancements summarised in Table 1, some
gaps should be addressed.

Firstly, to the best of the authors' knowledge, the accu-
racy  of  APC  systems  has  been  explored  in  a  fragmented
manner. A comprehensive framework that integrates proce-
dures for selecting control nodes (e.g., stations), collecting
data, performing data pre-processing, calculating the error
between  manual  and  APC-collected  data,  analysing  error
patterns,  computing  error  metrics,  and  evaluating  overall
accuracy is still lacking.

Secondly,  most  research  has  focused  on  APC  appli-
cations in buses and trains, leaving a significant gap in the
study of Open Mass Transit (OMT) systems (e.g., subways,
light-rail-transit).  They  pose  unique  challenges,  including
higher passenger volumes than not-mass transit ones (e.g.,
buses),  complex  station  layouts,  and  the  absence  of  entry
and exit controls.

Thirdly, most studies evaluate APC systems installed in
vehicles, overlooking station-based applications that can be
more  difficult  to  analyse  considering  multiple  access/exit
points (e.g., stairs, lifts, escalators).

This  study  seeks  to  fill  these  gaps  by  proposing  an
integrated  framework  for  evaluating  the  accuracy  of  APC
systems in OMT. The framework’s practical effectiveness is
illustrated through a real-world case study on the Brescia
Metro (Italy), a fully automated, open, light metro system in
Northern Italy. The case study examines video-based APC
technology combined with passive infrared sensors to count
passengers at three strategically selected stations. By com-
paring APC data with manual counts, this research quanti-

(Table 1) contd.....

Authors,
Year Ref. Location APC

Technology
Transport

Mode
Vehicles
Tested

(#)
Sample size

(Observations/Duration)
Accuracy

Evaluation
Metrics

Results

Cavallero et
al. (2023) [24] Turin, Italy Pressure Bus 1 679 (observations)

Linear regression
model, Confidence
intervals, Relative

error

1% ÷ 4% (relative
error)

Pronello &
Garzón Ruiz

(2023)
[25] Turin, Italy

Video
(commercial and
self-developed)

Bus 2 220 (hours)
Symmetric

percentage absolute
error

53% ÷ 55% Accuracy
(commercial); 72% ÷
74% accuracy (self-

developed)

Pronello et al.
(2024) [26] Turin, Italy Wi-fi Bus 1 Stop 14 (hours) Mean absolute

error

Overestimates
passenger numbers:
1.2 passengers mean

absolute error

Barabino et
al. (2024) [27] Cagliari, Italy Cellular-app

based Bus NA 30 (days)
Mean absolute

error; root mean
squared error

2.3 trips Mean
absolute error

Note: Representative, but not a comprehensive list of references.
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fies  accuracy  and  identifies  error  characteristics,  contri-
buting new insights to the field of APC systems applied for
OMT.

The remaining paper is structured as follows: Section 2
defines  the  methodological  framework  proposed  in  the
study.  Section  3  provides  a  detailed  description  of  the
Brescia  Metro  system  and  the  APC  technology  used,
presents the key findings, and contextualises them within
the broader literature. Section 4 summarises the study’s
contributions, highlights implications, and proposes direc-
tions for future research.

2. METHODOLOGY
This section outlines the framework for evaluating the

accuracy  of  APC  systems  in  an  OMT,  as  shown  in  the
flowchart in Fig. (1). The framework is systematically orga-
nised into two primary blocks, each containing distinct sub-
blocks  that  address  specific  aspects  of  data  collection,
processing,  and  analysis.

Block 1 involves selecting representative stations from
the OMT network, collecting passenger count data through

manual observations and automated systems, and pre-pro-
cessing  the  data  to  ensure  synchronisation.  The  selection
process captures structural and operational diversity across
the network, while data collection spans multiple times and
days to reflect temporal variability. Pre-processing ensures
alignment between manual and automated counts.

Block 2 focuses on analysing APC performance, both on
aggregated  and  disaggregated  levels.  The  aggregated
analysis  evaluates  overall  accuracy  across  stations  and
observation intervals using metrics such as Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), and Root
Mean Squared Error (RMSE) and Symmetric Mean Absolute
Percentage Error (SMAPE), while confidence intervals help
identify systematic and random errors. The disaggregated
analysis examines station-specific performance, accounting
for variations in structural and operational conditions, pro-
viding  detailed  insights,  and  highlighting  localised  chal-
lenges.

The  content  of  each  block  is  detailed  in  what  follows.
The list of variables throughout the manuscript is reported

Fig. (1). Flowchart of the proposed framework.

in the Appendix.
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2.1. B1: Station Selection, Data Collection and Pre-
processing

Block B1 consists of three sub-blocks. In Sub-Block 1.1,
stations are selected based on their distinct configurations
and passenger volumes to ensure a representative sample
of  the  OMT  network.  In  Sub-Block  1.2,  passenger  count
data are collected manually and via automated systems at
these stations, covering various times and days. Sub-Block
1.3  focuses  on  pre-processing  the  data  by  synchronising
manual and automated counts and aligning timestamps to
ensure data reliability.

Each Sub-Block operates as follows:
In  Sub-Block  1.1,  a  set  of  stations  that  reflect  the

diversity  of  the  entire  OMT network  is  selected.  From a
theoretical perspective, data collection should encompass
all  stations  within  the  OMT  system.  However,  practical
constraints such as high costs and significant time require-
ments  may  make  this  comprehensive  approach  tricky,
particularly  in  large  systems.  Consequently,  a  selection
process becomes necessary to  address these challenges.
This  sub-block  tackles  this  issue  by  carefully  selecting
stations  that  constitute  a  representative  subset  of  the
network.

Specifically, stations are chosen based on their distinct
structural configurations and varying passenger volumes,
ensuring they adequately characterise the main configu-
rations  across  the  OMT  system.  This  selection  process
aims  to  capture  the  diversity  of  station  layouts  and
operational  conditions,  forming  a  solid  foundation  for
evaluating the APC system's performance across a broad
spectrum of scenarios.

More  formally,  let  S  represent  the  set  of  stations
selected for the study. The selection criteria ensure that S
includes  a  representative  mix  of  terminal  stations,  high-
traffic  hubs,  and  smaller,  less  crowded  stops,  thereby
reflecting  the  system's  overall  variability.  Moreover,  by
incorporating such diversity,  the analysis  can generalise
its  findings  and  generate  insights  applicable  to  the
broader  OMT network.  Additionally,  this  approach helps
identify  specific  challenges  posed  by  different  station
characteristics,  such  as  overlapping  passenger  flows,
multiple access points, or structural complexities, enabling
a more targeted evaluation of the APC system.

In  Sub-Block  1.2,  passenger  count  data  are  collected
manually  and  through  automated  systems  at  the  selected
stations to evaluate APC accuracy. More formally, for each
station s ϵ S, let T(s) be the set of observation intervals at
station  s,  and  t  ϵ  T(s)  represents  a  generic  observation
interval.

As  for  manual  data  collection  (task  (a)),  during  each
observation  interval  t  ϵ  T(s)  for  station  s  ϵ  S,  trained
checkers manually record the number of passengers ente-
ring and exiting, denoted by Min(s, t) and Mout(s, t), respec-
tively. The observations are conducted over multiple days,
covering  peak  and  off-peak  hours  to  capture  temporal
variations  in  passenger  behaviour.

Simultaneously, the APC system automatically records
the  number  of  passengers  entering  and  exiting  during

each interval t ϵ T(s) for station s ϵ S, denoted by Ain(s, t)
and Aout(s, t), respectively (task (b)).

In Sub-Block 1.3, manual pre-processing is conducted to
synchronise manual and automated counts, ensuring tempo-
ral alignment between the two datasets. This process invol-
ves  identifying  the  reference  timestamps  in  both  datasets
and aligning them to account for  any discrepancies.  If  the
clocks  used  by  the  manual  observers  and  the  APC  system
differ,  adjustments  are  made  by  applying  a  time-shift
correction calculated based on observed offsets between the
two sources. The synchronisation ensures that each manual
observation  interval  corresponds  precisely  to  the  corres-
ponding automated data, creating a consistent and reliable
dataset for subsequent analysis.

2.2. B2: Accuracy Evaluation
Block B2 involves two sub-blocks dedicated to analysing

APC  performance.  Sub-Block  2.1  (aggregated  analysis)
evaluates the accuracy of APC counts across all stations and
observation intervals by calculating passenger count errors
and  employing  metrics  such  as  MAE,  RMSE,  and  SMAPE.
Confidence  intervals  are  used  to  identify  systematic  and
random  errors,  with  corrective  coefficients  applied  as
needed.  Sub-Block  2.2  (disaggregated  analysis)  shifts  the
focus  to  station-specific  analysis,  assessing  APC  perfor-
mance at  individual  stations.  This  detailed  approach acco-
unts for variations in structural and operational conditions,
enabling  a  comparative  evaluation  and  identification  of
localised  challenges.

Each Sub-Block operates as follows:
Focusing on the aggregated analysis (Sub-Block 2.1), it

considers the overall dataset, encompassing all stations S
and  observation  intervals,  which  is  defined  as  UsϵST(s).
This comprehensive evaluation provides an overall assess-
ment of the APC system’s performance.

Firstly,  the  difference  between  APC-generated  and
manual  counts  is  computed  (task  (a)).  The  latter  are
assumed to represent the ground truth1. More formally, let
εin(s,  t) and εout(s,  t) be the passenger count error during
each  interval  t  ϵ  T(s)  for  station  s  ϵ  S,  for  entering  and
exiting, respectively. It is computed as follows [26-30]:

(1)

(2)

A  positive  difference  returned  by  Eqs.  (1  or  2)
indicates that APC overestimates passengers; conversely.
Vice versa, a negative difference indicates that APC under-
estimates passengers.

1No  counting  method  guarantees  100%  accuracy  under  all
operational  conditions,  whether  automatic  or  manual.  However,  in  this
study,  manual  counting  is  assumed  to  be  error-free,  even  though  this
assumption  might  be  debatable  (e.g.,  [16]).  To  mitigate  this  issue,
checkers were thoroughly trained, and one checker was assigned to each
entry/exit points of the investigated station. At the end of each observation
interval,  the  data  were  consolidated  to  provide  the  total  number  of
entering and exiting passengers at each station. To summarise, manual
counting was treated as the ground truth for this study.

𝜀𝑖𝑛 (𝑠, 𝑡) = 𝐴𝑖𝑛(𝑠, 𝑡) − 𝑀𝑖𝑛(𝑠, 𝑡)  

 ∀𝑠 ∈ 𝑆   ∀𝑡 ∈ 𝑇(𝑠)  

𝜀𝑜𝑢𝑡 (𝑠, 𝑡) = 𝐴𝑜𝑢𝑡 (𝑠, 𝑡) − 𝑀𝑜𝑢𝑡 (𝑠, 𝑡) 

  ∀𝑠 ∈ 𝑆   ∀𝑡 ∈ 𝑇(𝑠)  
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Secondly, the relative frequency distribution of εin(s, t)
and  εout(s,  t)  is  determined  and  analysed  to  qualitatively
understand error patterns (task (b)). This analysis involves
tabulating the frequency of errors across defined intervals
to  identify  the  most  common  error  magnitudes  and  the
overall distribution shape. By examining these patterns, it
is possible to assess whether the errors are predominantly
small and centred around zero, suggesting random noise,
or  whether  they  are  larger  and  skewed  with  respect  to
zero, indicating systematic discrepancies. This distinction
is essential for understanding whether the observed errors
stem from inherent variability in passenger flows or biases

Thirdly,  to  evaluate  error  patterns  quantitatively,
several error metrics are employed (e.g [32, 33]) (task (c)).
These  are  negatively  oriented  scores,  i.e.,  the  lower  the
error metrics,  the better the counting performance.  More
formally, let:

• TPCE, TPCEin and TPCEout denote the Total Passenger
Count Error for all movements, entering and exiting pass-
engers, respectively.

•  MAEin  and  MAEout  denote  the  Mean  Absolute  Error
(MAE)  on  entering  and  exiting  passenger  counts,
respectively.

• RMSEin and RMSEout denote the Root Mean Squared
Error (RMSE) on entering and exiting passenger counts,
respectively.

• SMAPEin and SMAPEout denote the Symmetric Mean
Absolute  Percentage  Error  (SMAPE)  on  entering  and
exiting  passenger  counts,  respectively.

• µ(εin) and µ(εout) denote the mean of the count error,
for entering and exiting passengers, respectively.

• σ(εin) and σ(εout) denote the standard deviation of the
count  error,  for  the  passengers  entering  and  exiting,
respectively.

• z(α) denotes the value of a random variable following
the standard normal distribution, related to the confidence
level  α  (i.e.,  1-α  significance).  In  this  study  α=0.95.
Therefore,  z(α)=1.96.

• CIin  and CIout  denotes the confidence interval of the
count  error  for  entering  and  exiting  passengers,
respectively.

• βin and βout denotes the corrective coefficient for the
entering and exiting passenger counts, respectively.

The TPCE measures the relative deviation between the
total automated and manual counts over the entire dataset,
considering all movements or entering and exiting passen-
gers separately. It is defined as follows [28-30]

(3)

(4)

(5)

The MAE quantifies the average magnitude of errors in
the APC system’s counts without considering their direc-
tion. Since the MAE is a linear metric,  it  gives the same
weight to each individual error in the sample. It is defined
as follows for entering and exiting passengers separately
[34-36]:

(6)

(7)

The  RMSE is  a  non-linear  metric  emphasising  larger
errors  by  squaring the  differences  before  averaging and
then  taking  the  square  root.  Therefore,  the  RMSE  is
remarkably effective when large errors are undesired. It is
defined  as  follows  for  entering  and  exiting  passengers,
respectively [34-36]:

(8)

(9)

The SMAPE evaluates the relative errors, providing a
percentage measure. It is defined as follows for entering
and exiting passengers, respectively (e.g [37, 38]):

(10)

(11)

Fourthly,  the  overall  accuracy  of  the  APC  system  is
quantitatively assessed (task (d)). Accuracy can be defined
in various ways depending on the context and the specific
measurement objectives.  In this study, it  is  computed as
the complement to 100% of the SMAPE. More formally, let
ACCin and ACCout denote the accuracy of passenger count
for entering and exiting passengers, respectively. Hence,
it is computed as follows [37]:

(12)
(13)

The  accuracy  is  a  positively  oriented  score,  meaning
that  the  higher  the  accuracy,  the  better  the  counting
performance. This metric provides a straightforward and
interpretable measure of the APC system's reliability for
both entering and exiting passenger counts.

𝑇𝑃𝐶𝐸 = 100%
∑ ∑ [𝜀𝑖𝑛(𝑠, 𝑡) + 𝜀𝑜𝑢𝑡 (𝑠, 𝑡)]𝑡∈𝑇(𝑠)𝑠∈𝑆

∑ ∑ [𝑀𝑖𝑛(𝑠, 𝑡) + 𝑀𝑜𝑢𝑡(𝑠, 𝑡)]𝑡∈𝑇(𝑠)𝑠∈𝑆

 

𝑇𝑃𝐶𝐸𝑖𝑛 = 100%
∑ ∑ 𝜀𝑖𝑛(𝑠, 𝑡)𝑡∈𝑇 (𝑠)𝑠∈𝑆

∑ ∑ 𝑀𝑖𝑛(𝑠, 𝑡)𝑡∈𝑇 (𝑠)𝑠∈𝑆

 

𝑇𝑃𝐶𝐸𝑜𝑢𝑡 = 100%
∑ ∑ 𝜀𝑜𝑢𝑡 (𝑠, 𝑡)𝑡∈𝑇 (𝑠)𝑠∈𝑆

∑ ∑ 𝑀𝑜𝑢𝑡 (𝑠, 𝑡)𝑡∈𝑇 (𝑠)𝑠∈𝑆

 

𝑀𝐴𝐸𝑖𝑛 =
1

|⋃ 𝑇(𝑠)𝑠∈𝑆 |
∑ ∑ |𝜀𝑖𝑛(𝑠, 𝑡)|

𝑡∈𝑇(𝑠)𝑠∈𝑆

 

𝑀𝐴𝐸𝑜𝑢𝑡 =
1

|⋃ 𝑇(𝑠)𝑠∈𝑆 |
∑ ∑ |𝜀𝑜𝑢𝑡 (𝑠, 𝑡)|

𝑡∈𝑇(𝑠)𝑠∈𝑆

 

𝑅𝑀𝑆𝐸𝑖𝑛 = √
1

|⋃ 𝑇(𝑠)𝑠∈𝑆 |
∑ ∑ 𝜀𝑖𝑛(𝑠, 𝑡)2

𝑡∈𝑇 (𝑠)𝑠∈𝑆

 

𝑅𝑀𝑆𝐸𝑜𝑢𝑡 = √
1

|⋃ 𝑇(𝑠)𝑠∈𝑆 |
∑ ∑ 𝜀𝑜𝑢𝑡 (𝑠, 𝑡)2

𝑡∈𝑇 (𝑠)𝑠∈𝑆

 

𝑆𝑀𝐴𝑃𝐸𝑖𝑛 =
100%

|⋃ 𝑇(𝑠)𝑠∈𝑆 |

∑ ∑
|𝜀𝑖𝑛(𝑠, 𝑡)|

[𝐴𝑖𝑛(𝑠, 𝑡) + 𝑀𝑖𝑛(𝑠, 𝑡)] 2⁄
𝑡∈𝑇(𝑠)𝑠∈𝑆

 

𝑆𝑀𝐴𝑃𝐸𝑜𝑢𝑡 =
100%

|⋃ 𝑇(𝑠)𝑠∈𝑆 |

∑ ∑
|𝜀𝑜𝑢𝑡 (𝑠, 𝑡)|

[𝐴𝑜𝑢𝑡 (𝑠, 𝑡) + 𝑀𝑜𝑢𝑡 (𝑠, 𝑡)] 2⁄
𝑡∈𝑇(𝑠)𝑠∈𝑆

 

𝐴𝐶𝐶𝑖𝑛 = 100% − 𝑆𝑀𝐴𝑃𝐸𝑖𝑛  

𝐴𝐶𝐶𝑜𝑢𝑡 = 100% − 𝑆𝑀𝐴𝑃𝐸𝑜𝑢𝑡  

in the APC system's measurement processes [31].

Hence,  to  quantitatively  distinguish  systematic  errors
from random errors, confidence intervals are computed for
entering and exiting passengers, respectively, as follows [6,
39, 40]:
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(14)

(15)

Therefore,  errors  are  classified  as  systematic  if  the
confidence interval does not include zero, indicating con-
sistent  biases  in  the  APC  system's  measurements  and
necessitating  the  application  of  a  corrective  coefficient.
This  corrective  coefficient  is  defined  as  follows  for
entering  and  exiting  passengers,  respectively  [28-30]:

(16)

(17)

Conversely,  if  the  confidence  interval  included  zero,
errors  are  classified  as  random,  indicating  no  significant
systematic  bias.  In  such  cases,  the  APC  system  was
considered relatively accurate,  and corrective coefficients
were deemed unnecessary. This classification helps identify
the nature of the errors and guides whether adjustments to
the APC system are required.

Next, focusing on the disaggregated analysis (Sub-Block
2.2),  the  performance  of  the  APC  system  is  analysed
separately for each station s ϵ S to discover station-specific
patterns by accounting for structural and operational varia-
tions.  Station-specific  error  distributions,  error  metrics,
accuracies, confidence intervals, and corrective coefficients
are  determined  using  the  previous  Eqs.  from  (1  to  17),
restricting  the  calculations  to  the  set  T(s)  of  the  specific
station s ϵ S (task (a)). This approach enables a comparative
analysis  of  APC  system  performance  across  different
environments (task (b)). Observed patterns are associated
with  station  characteristics,  such  as  the  presence  of
escalators and ramps, as well  as the density of passenger
movements.

3. RESULTS AND DISCUSSION
The Brescia Metro, an OMT system in Italy, serves as a

case  study  to  demonstrate  the  effectiveness  of  the  pro-
posed  framework.  A  brief  context  overview  is  provided
below,  along  with  the  implementation  details  for  each
block of the framework. The findings are parsed within the
existing  literature,  highlighting  consistencies  and  differ-
ences. The results are supported by tables to illustrate key
metrics and trends.

3.1. Context
Brescia stands as one of Italy's foremost industrial and

economic centres and ranks as the second-most populous
city in its region [2, 41]. As of January 1, 2024, the city has
a population of 198,259 residents, spans an area of 90.35
km2,  and  boasts  a  population  density  of  approximately
2,194.34  inhabitants  per  square  kilometre  [42].

Additionally,  Brescia  serves  as  the  capital  of  the
province bearing the same name, home to over 1.2 million
residents and a wide range of vital industrial, commercial,
and  social  hubs.  These  factors  collectively  contribute  to
significant daily passenger traffic [43].

The  Brescia  Metro,  an  open  light  rail  system,  spans
approximately 13.7 kilometres and includes 17 stations. The
system is fully automated, offering a high-frequency service
with headways ranging from four to six minutes [44].

The APC system deployed in the Brescia Metro utilises
passive infrared sensors integrated with video acquisition
technologies  (Fig.  2).  These  sensors  detect  temperature
changes  caused  by  passengers  crossing  entry  and  exit
thresholds, while the video component enhances accuracy
by resolving ambiguities in crowded or overlapping situa-
tions.  Despite  these  technological  advantages,  environ-
mental factors such as lighting variations, obstructions, and
congestion  may  introduce  errors,  necessitating  a  robust
evaluation  methodology.

Fig.  (2).  Photographic  representation  of  the  APC  system

3.2. B1: Station Selection, Data Collection and Pre-
processing

Due to budget and time constraints, it was not feasible
to collect data across all 17 stations of the Brescia Metro.
Instead,  a  subset  of  stations  (S)  was  selected  (Sub-Block
1.1). Specifically, the study targeted three stations, referred
to  as  A,  B,  and  C,  to  comply  with  confidentiality  policies.
These  stations  were  chosen  based  on  their  distinct  confi-
gurations and varying passenger volumes, representing the
main configurations found across the Brescia Metro system.

Station  A  features  a  shared  access  point  serving  both
travel  directions.  The  access  includes  two  separate  stair-
cases  and  one  escalator,  all  leading  to  a  single  platform.
This station has three APC portals: one for each staircase
and  one  for  the  escalator,  providing  comprehensive
monitoring  of  both  entering  and  exiting  passenger  flows.

Station B also has a shared access point for both travel
directions  but  is  equipped  with  a  single  APC  portal.  This
portal monitors all entering flows but provides only partial
coverage for  exiting flows,  as  there are  no portals  on the
escalators leading away from the platform.

Station C, in contrast, has independent access points for
each  travel  direction,  with  separate  APC  portals  for  the
stairs  and  elevators.  This  configuration  enables  complete
monitoring of both entering and exiting flows.

Regarding  operational  characteristics,  Stations  A,  B,
and C represent high, medium, and low passenger volumes,

𝐶𝐼𝑖𝑛 = 𝜇(𝜀𝑖𝑛) ± 𝑧(𝛼) ∙
𝜎(𝜀𝑖𝑛)

√|⋃ 𝑇(𝑠)𝑠∈𝑆 |
   

𝐶𝐼𝑜𝑢𝑡 = 𝜇(𝜀𝑜𝑢𝑡) ± 𝑧(𝛼) ∙
𝜎 (𝜀𝑜𝑢𝑡)

√|⋃ 𝑇 (𝑠)𝑠 ∈𝑆 |
   

𝛽𝑖𝑛 = 1 −
𝜇(𝜀𝑖𝑛) 

∑ ∑ 𝑀𝑖𝑛 (𝑠,𝑡)𝑡∈𝑇(𝑠)𝑠∈𝑆
   

𝛽𝑜𝑢𝑡 = 1 −
𝜇 (𝜀𝑜𝑢𝑡) 

∑ ∑ 𝑀𝑜𝑢𝑡 (𝑠,𝑡)𝑡∈𝑇(𝑠)𝑠∈𝑆
   

deployed  in  the  Brescia  Metro.
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respectively. This diversity ensures a comprehensive data-
set  and  enables  a  robust  evaluation  of  the  APC  system's
performance across varying scenarios.

Passenger  flows  were  recorded  both  manually  by
checkers (task (a)) and automatically by the APC system
(task(b)) across a total of 674 observation intervals (T(s)),
each lasting five minutes (Sub-Block 1.2). The choice of a
five-minute  interval  was  a  balance  between  ensuring
sufficient  data  granularity  and  avoiding  excessive  noise
that  could  arise  from  using  too  short  intervals.  These
observation  intervals  were  collected  between  February
and April 2024, globally providing over 55 hours of data.

Manual  pre-processing  showed  good  alignment  bet-
ween the manual and APC counts, which was ensured by
accurately synchronising the checkers and APC clocks to
the  same  reference  time  (Sub-Block  1.2).  As  a  result,
negligible  time-shift  corrections  were  required.

3.3. B2: Accuracy Evaluation

3.3.1. Aggregated Data Analysis
Focusing on the aggregated analysis (Sub-Block 2.1),

the APC system demonstrated high reliability in grouped
passenger counts, with a slight overestimation observed in
both entering and exiting passengers. Table 2 summarises
the descriptive statistics for manual and APC data.

Table  2.  Aggregated  data  analysis:  descriptive
statistics.

Variable Symbol Unit
Number of

Observation
Intervals

Mean Std.
Dev. Min. Max. Sum

Manual
entering

count
Min(s, t) pass 360 10.59 11.70 0 56 3811

Manual
exiting
count

Mout(s, t) pass 314 7.22 9.27 0 56 2266

APC
entering

count
Ain(s, t) pass 360 10.64 11.32 0 63 3831

APC
exiting
count

Aout(s, t) pass 314 7.32 8.86 0 55 2298

Overall,  the  APC  system  demonstrates  a  slight  over-
estimation  for  both  entering  and  exiting  passenger  flows,
with the overestimation being more pronounced for exiting
passengers. This pattern diverges from the findings of [6],
where  the  APC  system  exhibited  a  consistent  under-
estimation bias across both flows on buses. Conversely, the
overestimation of exiting passengers observed in this study
aligns with the results of [19], who tested an infrared APC
system  on  trains.  However  [19],  reported  a  systematic
underestimation of entering passengers, marking a notable
difference in error patterns between the two systems. This
divergence  underscores  the  importance  of  contextual
factors,  such  as  transit  system  characteristics,  in  influ-
encing  APC  performance.

According to task (a), the count errors were computed
(Eqs. (1 and 2)), and the relative frequency distributions for
entering and exiting passengers were determined (task (b)),

revealing  key  aspects  of  the  APC  system's  performance
(Table  3).

Both distributions are centred around zero, with 40% of
entering  errors  and  43.31%  of  exiting  errors  aligning
perfectly with manual counts. This strong central tendency
indicates  that  the  system  frequently  achieves  accurate
results,  particularly  for  exiting  flows.

Small errors, within the range of −1 to +1, dominate the
distribution,  accounting for 64.44% of  entering errors and
73.89% of  exiting errors.  These findings highlight  the sys-
tem’s  general  reliability,  as  most  discrepancies  are  minor.
Exiting  flows  show  a  higher  proportion  of  small  errors,
suggesting  smoother  detection  at  exits  than  entries.

Table  3.  Aggregated  data  analysis:  Relative
frequency  distributions  of  the  counting  error.

Error Entering Exiting

<-10 0.56% 0.64%
-10 0.28% 0.32%
-9 0.00% 0.32%
-8 0.56% 0.00%
-7 0.00% 0.00%
-6 0.56% 0.32%
-5 0.56% 0.32%
-4 1.67% 1.59%
-3 3.89% 2.23%
-2 7.78% 6.05%
-1 13.89% 13.69%
0 40.00% 43.31%
1 10.56% 16.88%
2 9.72% 7.64%
3 4.17% 2.87%
4 1.94% 1.27%
5 1.67% 0.64%
6 1.39% 0.32%
7 0.56% 0.32%
8 0.00% 0.00%
9 0.28% 0.32%
10 0.00% 0.00%

>10 0.00% 0.96%
Tot 100.00% 100.00%

Larger  errors,  exceeding  ±3,  occur  less  frequently,
comprising 10.00% of entering errors and 7.32% of exiting
errors. Extreme errors greater than ±10 are rare, occurring
in less than 1.3% of cases, underscoring the APC system's
robustness.

The observed error patterns align with the aggregated
analysis, which showed that both entering and exiting flows
were  slightly  overestimated,  with  the  bias  being  more
pronounced for exiting passengers. This is reflected in the
relative  frequency  distribution,  where  exiting  errors  are
more  concentrated  around  zero  but  also  exhibit  a  slightly
higher proportion of positive deviations (31,21% for exiting
vs  30.28%  for  entering).  Overall,  the  error  distribution
confirms that the APC system performs reliably, with most
discrepancies being minor and random, while the occasional
occurrence  of  larger  entering  errors  highlights  potential
areas  for  improvement.
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Table  4.  Aggregated  data  analysis:  error  metrics,
accuracies,  confidence  intervals  and  corrective
coefficients.

Variable Symbol Unit Value

Total passenger count error for all
movements TPCE % +0.86

Total passenger count error for entering TPCEin % +0.52
Total passenger count error for exiting TPCEout % +1.41

Mean absolute error for entering MAEin pass +1.41
Mean absolute error for exiting MAEout pass +1.32

Root mean squared error for entering RMSEin pass +2.33
Root mean squared error for exiting RMSEout pass +2.86

Symmetric mean absolute percentage
error for entering SMAPEin % +13.29

Symmetric mean absolute percentage
error for exiting SMAPEout % +18.14

Accuracy on passenger count for entering ACCin % +86.71
Accuracy on passenger count for exiting ACCout % +81.86

Confidence interval of the error for
entering CIin pass [-0.186;0.297]

Confidence interval of the error for exiting CIout pass [-0.186;0.297]
Corrective coefficient for entering βin - NA
Corrective coefficient for exiting βout - NA

Next,  error  metrics,  accuracies,  confidence  intervals,
and  corrective  coefficients  were  computed  according  to
tasks from (b) to (d) (Eqs. from (3  to 15)).  The results are
provided in Table 4.

Focusing on individual error metrics, the TPCE reveals
that the Brescia Metro APC system achieves lower relative
counting  errors  than  other  APC systems  reported  in  the
literature [19, 24]. This suggests that the system reliably
captures passenger flows under real-world conditions.

The MAE indicates an average absolute error slightly
above  one  passenger  per  observation  interval  for  both
entering and exiting flows.  This result  is  consistent with
the  performance  of  alternative  APC  technologies,  as

reported by different studies [25, 27]. However, the RMSE
for  both  entering  and  exiting  passengers  is  significantly
higher than that observed by in a previous research [6].
This  discrepancy  may  be  attributed  to  the  higher  pass-
enger  volumes  recorded  in  the  Brescia  Metro,  which
diminish  the  relative  impact  of  the  error  compared  to
systems  operating  in  lower-density  conditions.

The difference between RMSE and MAE is more pro-
nounced for exiting than entering passengers (i.e., 1.55 vs
0.92,  respectively),  indicating  that  larger  errors  occur
more frequently in exit observations. This trend is further
reflected in the SMAPE, which is higher for leaving than
incoming streams. As a result,  the accuracy for entering
passengers exceeds that for exiting passengers by approxi-
mately 5%. Nevertheless, the overall accuracy of the APC
system remains above average compared to other on-field
APC evaluations in the literature [6, 25, 45]. The system's
performance is surpassed only by experiments conducted
in controlled environments [20, 23].

The  confidence  interval  analysis  indicates  that  both
intervals include zero, contrary to the findings of the study
[6], where the confidence bounds for entering passengers
were entirely below zero. In the Brescia Metro, the inclu-
sion of zero classifies the errors as random, negating the
necessity  for  corrective  coefficients.  Consequently,  the
Brescia  Metro  APC  system  can  be  considered  relatively
accurate and suitable for deployment without significant
calibration adjustments.

3.3.2. Disaggregated Data Analysis
The  disaggregated  analysis  (Sub-Block  2.2)  investi-

gates the performance of the APC system at each station
individually,  focusing  on  error  frequency  distributions,
error metrics, accuracies, and confidence intervals. Table
5 summarises the manual and APC data with some descri-
ptive  statistics,  Table  6  provides  the  relative  frequency
distributions of the counting error, while Table 7 presents
the error metrics and other relevant parameters (task (a)).

Table 5. Disaggregated data analysis: descriptive statistics.

Variable Symbol Unit Mean Std. Dev.

Station A B C A B C A B C

Manual entering count Min(s, t) pass 150 107 103 11.57 14.91 4.67 15.54 6.60 5.27
Manual exiting count Mout(s, t) pass 104 107 103 11.46 3.67 6.61 11.56 3.82 9.04
APC entering count Ain(s, t) pass 150 107 103 11.67 14.84 4.78 14.98 6.07 5.51
APC exiting count Aout(s, t) pass 104 107 103 11.87 3.72 6.47 11.01 3.65 8.32

Variable Symbol Unit Min. Max. Sum

Station A B C A B C A B C

Manual entering count Min(s, t) pass 0 4 0 56 51 19 1735 1595 481
Manual exiting count Mout(s, t) pass 0 0 0 56 18 41 1192 393 681
APC entering count Ain(s, t) pass 0 5 0 63 48 21 1751 1588 492
APC exiting count Aout(s, t) pass 0 0 0 55 17 42 1234 398 666

Number of Observation Intervals
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Table 6. Disaggregated data analysis: relative frequency distributions of the counting error.

Error Entering Exiting

Station A B C A B C

<-10 1.33% 0.00% 0.00% 1.92% 0.00% 0.00%
-10 0.67% 0.00% 0.00% 0.96% 0.00% 0.00%
-9 0.00% 0.00% 0.00% 0.00% 0.00% 0.97%
-8 1.33% 0.00% 0.00% 0.00% 0.00% 0.00%
-7 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
-6 1.33% 0.00% 0.00% 0.00% 0.93% 0.00%
-5 0.67% 0.93% 0.00% 0.96% 0.00% 0.00%
-4 2.67% 1.87% 0.00% 3.85% 0.00% 0.97%
-3 5.33% 5.61% 0.00% 0.96% 1.87% 3.88%
-2 5.33% 12.15% 6.80% 10.58% 1.87% 5.83%
-1 8.67% 14.95% 20.39% 11.54% 17.76% 11.65%
0 34.67% 37.38% 50.49% 23.08% 52.34% 54.37%
1 10.00% 10.28% 11.65% 19.23% 16.82% 14.56%
2 14.00% 8.41% 4.85% 10.58% 7.48% 4.85%
3 5.33% 3.74% 2.91% 5.77% 0.00% 2.91%
4 2.67% 1.87% 0.97% 3.85% 0.00% 0.00%
5 2.67% 0.93% 0.97% 1.92% 0.00% 0.00%
6 1.33% 1.87% 0.97% 0.00% 0.93% 0.00%
7 1.33% 0.00% 0.00% 0.96% 0.00% 0.00%
8 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
9 0.67% 0.00% 0.00% 0.96% 0.00% 0.00%

10 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
>10 0.00% 0.00% 0.00% 2.88% 0.00% 0.00%
Tot 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Table  7.  Disaggregated  data  analysis:  error  metrics,  accuracies,  confidence  intervals  and  corrective
coefficients.

Variable Symbol Unit Value

Station A B B

Total passenger count error for all movements TPCE % +1.98 -0.10 -0.34
Total passenger count error for entering TPCEin % +0.92 -0.44 +2.29
Total passenger count error for exiting TPCEout % +3.52 +1.27 -2.20

Mean absolute error for entering MAEin pass +1.92 +1.30 +0.79
Mean absolute error for exiting MAEout pass +2.46 +0.70 +0.81

Root mean squared error for entering RMSEin pass +3.04 +1.91 +1.34
Root mean squared error for exiting EMSEout pass +4.58 +1.25 +1.50

Symmetric mean absolute percentage error for entering SMAPEin % +16.52 +8.73 +16.65
Symmetric mean absolute percentage error for exiting SMAPEout % +21.10 +18.96 +12.32

Accuracy on passenger count for entering ACCin % +83.48 +91.27 +83.35
Accuracy on passenger count for exiting ACCout % +78.90 +81.04 +87.68

Confidence interval of the error for entering CIin pass [-0.380;0.594] [-0.380;0.594] [-0.152;0.366]
Confidence interval of the error for exiting CIout pass [-0.476;1.284] [-0.191;0.284] [-0.435;0.144]

Corrective coefficient for entering βin - NA NA NA
Corrective coefficient for exiting βout - NA NA NA

Note: The results are compared across the stations in the following paragraphs (task (b)).
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3.3.3. Station A
This station, the busiest one in the study, was monitored

over 150 observation intervals for entering passengers and
104  intervals  for  exiting  passengers.  This  asymmetry  in
observations arises from the presence of escalators that are
exclusively used for entry, which affects the data collection
process. The data were gathered on February 15, 2024, from
9:00 AM to 4:00 PM.

The relative error frequency distribution at this station
reveals  significant  patterns.  For  entering  passengers,
34.67% of errors fell at zero, indicating alignment with man-
ual counts, while 53.33% were within the range of −1 to +1,
suggesting  high  reliability  for  small  discrepancies.  How-
ever,  errors  exceeding  ±3  accounted  for  16.67%,  high-
lighting the  not  neglectable  presence of  larger  deviations.
For  exiting  passengers,  zero-error  frequency  was  lower
(23.08%), although 53.85% of errors fall within the −1 to +1
range. Larger errors, particularly those exceeding ±3, were
more  frequent  for  alighting  flows  (18.27%),  reflecting
greater  challenges  in  counting  accuracy.

This station exhibited the highest TPCE among the three,
consistently overestimating both entering and exiting pass-
enger  flows.  The  discrepancies  were  particularly  pro-
nounced  for  exiting  passengers,  as  evidenced  by  higher
error metrics such as MAE and RMSE. These larger errors
can be attributed to the station's structural complexity and
high passenger volumes, where overlapping movements and
rapid exits from trains create challenges for APC systems.
Unlike entering, where the entry process to the platform is
more  gradual,  exiting  occurs  quickly  when  trains  arrive,
exacerbating  the  counting  difficulty.

Moreover,  the  pronounced  difference  between  RMSE
and  MAE  further  indicates  a  higher  frequency  of  larger
errors for exiting passengers. This trend is reflected in the
lower SMAPE and greater accuracy for entering compared
to  exiting  flows.  Despite  these  discrepancies,  confidence
intervals for both entering and exiting flows included zero,
confirming  that  the  errors  were  random  and  did  not
necessitate  corrective  coefficients.

These findings align with the broader literature, where
high-density environments amplify APC system errors, parti-
cularly for exiting passengers [19]. However, the observed
accuracy remains consistent with industry standards for on-
field APC deployments.

3.3.4. Station B
This  station,  characterised  by  medium passenger  volu-

mes, was observed over 107 intervals for both entering and
exiting  passenger  flows.  The  data  were  collected  on
February 16, 2024, and April 15, 2024, from 8:00 AM to 5:00
PM.

The  relative  error  frequency  distribution  at  B  station
shows greater alignment with manual counts. For entering
passengers,  37.38%  of  errors  were  zero,  and  62.62%  fell
within the −1 to +1 range, reflecting high accuracy for small
deviations. Larger errors (exceeding ±3) were notably less
frequent  than  A  station,  accounting  for  only  7.48%.  Simi-
larly,  for  exiting  passengers,  52.34%  of  errors  were  zero,
with  86.92%  inside  the  −1  to  +1  range  and  only  1.87%
exceeding ±3.

Coherently, the APC system demonstrated robust perfor-
mance at this station, with minimal errors compared to the
aggregated  data.  The  global  TPCE showed a  slight  under-
estimation, with entering flows underestimated and exiting
flows slightly overestimated. Error metrics such as MAE and
RMSE  were  significantly  lower  than  those  observed  at  A
station, corroborating smaller and less variable errors.

This reduced error magnitude reflects the simpler pass-
enger  flow dynamics  and lower  volumes at  B  station.  This
resulted  in  great  accuracy,  especially  for  entering  pass-
engers,  which  was  the  highest  across  the  dataset.  Both
confidence intervals for entering and exiting flows included
zero,  confirming  the  random  nature  of  the  errors  and
negating  the  need  for  corrective  coefficients.

3.3.5. Station C
Station  C,  with  the  lowest  passenger  volumes,  was

observed over  103 intervals  for  entering and exiting pass-
enger flows. Data were collected on February 13, 2024, from
8:30 AM to 5:00 PM.

The  error  frequency  distribution  at  station  C  under-
scores  the  reliability  of  the  APC  system  in  low-density
environments.  For  entering  passengers,  50.49%  of  errors
were zero, with 82.52% within the −1 to +1 range. Larger
errors  (exceeding  ±3)  were  the  rarest  among  all  stations,
occurring  in  only  2.91%  of  observations.  Similarly,  for
exiting passengers, 54.37% of errors were zero, with 80.58%
within  the  −1  to  +1  range  and  only  1.94% exceeding  ±3,
indicating  a  high  concentration  of  minor  discrepancies.
Notably,  this  station  exhibited  the  highest  proportion  of
zero-error observations for both entering and exiting flows,
underscoring its reliability.

At  C  station,  the  APC  system  exhibited  robust  perfor-
mance,  with  a  slightly  negative  TPCE,  reflecting  a  slight
underestimation  of  total  passenger  flows.  While  entering
flows  were  slightly  overestimated,  exiting  flows  were
underestimated.  The  MAE  and  RMSE  values  for  entering
flows were the lowest among the three stations, indicating
smaller  absolute errors compared to the A and B stations,
respectively. The observed accuracy was relatively high for
both  entering  and  exiting  flows,  reflecting  the  system's
effectiveness  in  low-density  environments.

These results highlight the benefits of simpler passenger
flow patterns and reduced passenger densities in minimising
APC system errors.  Confidence intervals  for  both entering
and  exiting  flows  included  zero,  classifying  the  errors  as
random and eliminating the need for corrective coefficients.
The  lack  of  systematic  biases  further  supports  the  APC
system’s  reliability  at  this  station.

3.3.6. Summary of Disaggregated Analysis
The disaggregated analysis of the APC system's perfor-

mance  across  different  stations  revealed  notable  vari-
ations  influenced  by  station-specific  factors.  Station  A,
with multiple access points, exhibited the highest errors,
particularly for alighting flows. This was attributed to its
complex  layout  and  high  passenger  density,  leading  to
overlapping  passenger  flows  and  simultaneous  entering
and exiting passengers. Conversely, Station C, character-
ised  by  low  passenger  volumes  and  independent  access
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points for each travel direction, offered the simplest test
case,  resulting  in  reduced  errors  and  higher  reliability.
Station  B,  with  medium passenger  volumes  and average
structural  complexity,  served  as  an  intermediate  case,
demonstrating  moderate  accuracy  levels.  These  findings
underscore  the  significant  impact  of  station  design  and
passenger  density  on  APC system performance.  Stations
with simpler layouts and lower passenger volumes tend to
provide  more  accurate  results,  while  those  with  higher
complexities or overlapping passenger flows present addi-
tional challenges. Therefore, site-specific conditions such
as  station  architecture,  escalators  or  ramps,  and  pass-
enger  density  substantially  influence  accuracy.

Nevertheless,  the  confidence  interval  analysis  con-
firmed  that  the  observed  errors  were  random  across  all
stations, supporting the overall robustness of the APC.

CONCLUSION
Automatic Passenger Counting (APC) systems are ess-

ential  tools  for  estimating  passenger  volumes  in  public
transportation. However, being automated systems, APCs
can  be  affected  by  measurement  errors  that  must  be
carefully evaluated and mitigated to ensure data reliability
and  accuracy.  Understanding  the  nature  and  extent  of
these errors is critical for improving APC performance and
adapting  these  systems  to  the  specific  challenges  of
diverse  transit  environments.

Previous research has extensively examined APC appli-
cations in buses and trains, but there remains a significant
gap  in  the  study  of  Open-mass  Transit  (OMT)  systems
because no real-world study was still available to the best
of  the  authors’  knowledge.  Nevertheless,  these  systems
present substantial challenges, including complex station
layouts,  high passenger flows,  and heterogeneous move-
ment  patterns,  which  necessitate  tailored  APC  solutions
capable of delivering reliable passenger flow data.

The main contributions of this paper include:
•  Presenting  a  comprehensive  framework  integrating

procedures  for  selecting  stations,  collecting  data,  perfor-
ming  pre-processing  steps  to  synchronise  the  data,  calcu-
lating  the  error  between  manual  and  APC-collected  data,
analysing  error  patterns,  computing  error  metrics,  and
evaluating  overall  accuracy.

•  Demonstrating  the  practical  effectiveness  of  this
framework  through  a  real-world  case  study  conducted  in
OMT,  showcasing  how  user-friendly  outputs  can  highlight
potential  areas  for  improving  the  efficient  management  of
APC systems.

When accurate, APC-collected data provide valuable in-
sights  into  passenger  volumes  at  each  station.  The  user-
friendly  representation  of  this  data  enables  transit  mana-
gers to identify where adjustments to APC systems are nee-
ded, enhancing operational efficiency and service quality.

The findings show that the APC system performs accu-
rately when aggregating passenger counts, with slight over-
estimations,  especially  for  exiting  passengers.  Confidence
interval analysis revealed that the errors were random and
not  systematic,  indicating  no  need  for  calibration  adjust-
ments. The station-specific analysis highlighted performance

variability,  with  simpler  stations  yiel-ding  more  accurate
results, while more complex stations with higher passenger
volumes faced additional challenges. These results suggest
that factors like station design, escalators, ramps, and pass-
enger density can significantly affect accuracy.

This  study  has  several  practical  implications  for  both
transportation  authorities  (TAs)  /  public  transport  compa-
nies (PTCs) and producers. Indeed, it can be used to:

• Enhance operational efficiency and support long-term
planning:  The  findings  on  APC  counting  accuracy  suggest
that TAs and PTCs can optimise resource allo-cation based
on real-time passenger  flow data.  Expanding APC systems
across  the  network  allows  for  improved  service  frequency
and  capacity  planning,  particularly  in  high-demand  areas.
Real-time  data,  transmitted  via  fast  networks  like  5G,
facilitates  immediate  adjustments  to  service  frequency,

•  Tailor  APC  systems  for  station-specific  performance
improvement:  The  study  found  that  simpler  stations  with
lower passenger volumes showed higher APC accuracy. This
suggests that producers should customise APC systems for
different  station  types,  ensuring  reliable  performance  in
stations with complex layouts or higher passenger density.
Adjustments  to  the  system  can  help  maintain  accuracy  in
varying  operational  conditions,  ensuring  its  effectiveness
across  diverse  transit  environments.

While  this  study provides  a  meaningful  contribution to
the  understanding  of  APC  system  performance  in  OMT,
several  open  questions  remain.  The  scope  of  the  analysis
was confined to three stations, selected to represent a range
of  configurations and passenger volumes.  While  these sta-
tions offer valuable insights,  they may not capture the full
diversity  of  operational  conditions  throughout  the  Brescia
Metro network. Additionally, data collection was restricted
to specific periods, potentially overlooking seasonal or tem-
poral variations in passenger behaviour, such as changes in
commuting  patterns  or  special  events  (e.g  [46,  47]).  Envi-
ronmental  factors,  including  lighting  variations  and  pass-
enger  crowding,  may  have  also  affected  system  perfor-
mance, particularly in crowded or poorly illuminated areas.

These open questions suggest a roadmap for future re-
search. First, improving the accuracy of APC systems should
be a key focus, with advanced analytical methods like mach-
ine learning playing a vital role in modelling and predicting
error patterns for better system calibration (e.g., [48]). This
would  help  address  passenger  flow  variations  driven  by
temporal, seasonal, or event-driven factors, reducing inaccu-
racies and improving perfor-mance.

A second area for development is integrating emerging
technologies  for  more  comprehensive  passenger  flow
monitoring  in  multi-modal  transit  networks.  Combining
APC data with Wi-Fi and cellular tracking could improve
scalability  and  flexibility,  enabling  real-time  tracking  in
diverse environments (e.g  [18, 49]). This approach could
enhance  the  capture  of  complex  passenger  movement
patterns  and  optimise  resource  allocation.

reducing  overcrowding  and  enhancing  passenger  satis-
faction.  The insights also support planning for new transit
routes  or  infrastructure  expansion,  helping  to  predict
potential  congestion and aligning development with actual
demand.
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Expanding future research to include more varied and
complex  case  studies  would  help  demonstrate  the  met-
hods'  breadth.  Including  stations  with  intricate  layouts,
such  as  interchanges  between multiple  lines,  and exten-
ding analyses over longer periods to capture more pass-
enger  flow  variability  and  environmental  factors  would
help  validate  the  APC  system  across  diverse  conditions
and highlight its adaptability.

Finally,  future  research  must  address  data  security,
privacy, and computational efficiency challenges. As APC
systems depend on real-time data and network communi-
cation, they are vulnerable to risks, as seen in 5G-enabled
systems (e.g [50-54]). Recent advances in authentication,
privacy,  and  blockchain  technologies  could  inform  APC
system  designs,  ensuring  secure  data  processing  in
dynamic  transit  environments.

Ultimately,  addressing  these  areas  in  future  research
will  not  only  improve  the  accuracy  and  reliability  of  APC
systems  but  also  contribute  to  the  broader  goals  of  opti-
mising  public  transportation  and  fostering  sustainable
urban mobility. By enabling more accurate data collection
and analysis, these systems can support informed decision-
making,  better  resource  allocation,  and  enhanced  pass-
enger  experiences  and  service  quality  [55].  All  of  these
factors  will  drive  the  continued  advancement  of  public
transit  systems  worldwide.
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APPENDIX
Notational Glossary

Symbol Description Units

S Set of stations (Station)
T(s) Set of observation intervals at station s (Interval)

Min(s, t) Number of passengers entering for station s ∈ S
during t ∈ T(s) collected by manual checkers (Pass)

Mout(s, t) Number of passengers exiting for station s ∈ S
during t ∈ T(s) collected by manual checkers (Pass)

Ain(s, t) Number of passengers entering for station s ∈ S
during t ∈ T(s) collected by APC (Pass)

Aout(s, t) Number of passengers exiting for station s ∈ S
during t ∈ T(s) collected by APC (Pass)

Overall dataset of analysis (Interval)

εin(s, t) Count error during each interval t ∈ T(s) for station s
∈ S for entering passengers (Pass)

εout(s, t) Count error during each interval t ∈ T(s) for station s
∈ S for exiting passengers (Pass)

TPCE Total passenger count error for all movements (%)
TPCEin Total passenger count error for entering passengers (%)
TPCEout Total passenger count error for exiting passengers (%)
MAEin Mean absolute error for entering passengers (Pass)
MAEout Mean absolute error for exiting passengers (Pass)

RMSEin
Root mean squared error on count for entering
passengers (Pass)

RMSEout
Root mean squared error on count for exiting
passengers (Pass)

SMAPEin
Symmetric mean absolute percentage error on count
for entering passengers (%)

SMAPEout
Symmetric mean absolute percentage error on count
for exiting passengers (%)

ACCin Accuracy on passenger count for entering passengers (%)
ACCout Accuracy on passenger count for exiting passengers (%)
µ(εin) Mean of the count error for entering passengers (Pass)
µ(εout) Mean of the count error for exiting passengers (Pass)

σ(εin)
Standard deviation of the count error for entering
passengers (Pass)

σ(εout)
Standard deviation of the count error for exiting
passengers (Pass)

⋃𝑇(𝑠)

𝑠∈𝑆
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Symbol Description Units

z(α)
Value of a random variable following the standard
normal distribution, related to the confidence level 

(-)

CIin
Confidence interval of the count error for entering
passengers (-)

CIout
Confidence interval of the count error for exiting
passengers (-)

βin
Corrective coefficient for the count for entering
passengers (-)

βout
Corrective coefficient for the count for exiting
passengers (-)

Note: The table is ordered by column Symbol according to its appearance
throughout the manuscript.
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