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Abstract: We extend a general network theorem of Calvert and Keady (CK) relating to the minimum number of arcs 

needed to guarantee the occurrence of the Braess Paradox. We rephrase the CK theorems and express our proof in the 

terminology of traffic networks. 

CK described their theorem in relation to a two-terminal network of liquid in pipes. “Approximately stated, it is: if every 

relationship between flow and head difference is not a power law, with the same (power) s on each arc, given at least 6 

pipes, one can arrange (lengths of) them so that Braess's paradox occurs, i.e. one can increase the conductivity of an indi-

vidual pipe yet require more power to maintain the same consumptions.” In relation to the original Braess situation of traf-

fic network flows, the relationship is between flow and link-cost on a congested link. 

Our extended theorem shows that 5 pipes (roads, links, arcs) arranged in a Wheatstone Bridge (WB) network (as in the 

original Braess network) are necessary and sufficient to produce a Braess paradox (BP) in a two-terminal network (not 

limited to liquid in pipes) if at least one of the five has a different conductivity law (not power s). 
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1. INTRODUCTION 

 Braess [1] described a “paradoxical” traffic network for 
which an extra road (arc, link) added with the express aim to 
relieve congestion, instead increased the travel time for all 
users. Calvert and Keady [2], hereinafter referred to as CK, 

restated the paradox for “physical” networks. “BRAESS'S 
PARADOX. The power consumed in a nonlinear network 
can increase if an arc's conductivity is increased with con-
sumptions held constant.” Penchina [3] restated it for electri-
cal networks: “BRAESS'S PARADOX. Decreasing the re-
sistance in a branch of the circuit can decrease the current 
at fixed input voltage, or increase the voltage at fixed input 
currents.” Here, we restate it for traffic networks: 
“BRAESS'S PARADOX. Increasing the capacity

1
 in an arc 

of a network can increase the network cost at fixed demand.” 

 CK were particularly concerned with physical two-
terminal water-supply pipe networks. Here, we are con-
cerned mainly with traffic networks. The results apply 
equally to both, and to any other network with “a potential 
function defined over the nodes and a flow defined over the 
arcs” [2] which satisfies Kirchhoff's rules. Examples of such 
networks and their corresponding terminologies are in  
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1To avoid awkward writing style, we use the words Increasing the capacity 

here loosely as a shorthand expression to indicate decreasing the congestion 

cost per unit flow. 

Penchina [3], Table 1 of which is repeated here for the con-
venience of the reader, with an additional column for a net-
work of mechanical springs, based on Penchina [4]. Note 
that in traffic networks, a node's potential (see Dial [5] p. 
191) equals the “length” (total generalized cost, GC, includ-
ing tolls) of the min-GC path from the origin node to it. 

 CK proved several theorems concerning the occurrence 
or non-occurrence of the Braess Paradox (hereinafter re-
ferred to as BP). Their final result: “Approximately stated, it 
is: if every relationship between flow and head difference is 
not a power law, with the same (power) s on each arc, given 
at least 6 pipes, one can arrange (lengths of) them so that 
Braess's paradsox occurs, i.e. one can increase the conductiv-
ity of an individual pipe yet require more power to maintain 
the same consumptions

2
.”  

 We extend this result by showing that the required num-
ber    of pipes is   >=  5. The equality applies only for the 
Wheatstone Bridge (hereinafter referred to as WB) arrange-
ment of Fig. (1A), as in the original network of Braess [1]. 
For the convenience of the reader interested in traf-
fic/transportation we rephrase the CK theorems and describe 
our proof in traffic network terminology instead of the ter-
minology of water-pipe networks. 

 To summarize, our extended theorem shows that 5 pipes 
(roads, links, arcs) arranged in a WB (as in the original 

                                                             
2The need for not all pipes with power law s (necessary condition) can be 

seen intuitively from the fact that if all had power law s, the ratio of mar-

ginal costs to average costs would be the same for all pipes. The sufficient 

condition is more complicated to explain. 
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Braess network) are necessary and sufficient to produce a 
Braess paradox in a two-terminal network if at least one of 
the five has a different conductivity law (not power s). 

 

Fig. (1A). A simple, 5-arc, 1-origin, 1-destination, 2-terminal 

“Wheatstone Bridge” network. In the Braess [1] paradoxical net-

work, all links are 1 way, so there are 3 paths: ABD, ACD, ABCD. 

The Minimal Critical Network of Penchina [7] had a two-way link 

(bridge) BC, and thus a 4th path ACBD. 

2. PROOF 

 Our proof of the extension of the CK result relies on four 
of their theorems ( 1, 2, 11, and 12). For full details of their 
theorems, the reader is referred to the original reference [2]. 
Here, we restate them approximately, paraphrasing them in 
the terminology of traffic networks. 

 CK Theorem 1. Deals with networks made up of arcs, a, 
each of which has a flow (Ua) which is proportional to a 
conductivity function ( a) which is a power law function of 
the potential difference (link/arc cost Ca ), with power (s) 
being the same positive number for each arc. i.e. the flow on 
arc a is Ua = ka a where a (Ca) = a (1) (Ca)

s
 

3
 where s is 

independent of a. The theorem shows that the system cost 
(measured, e.g., in vehicle-hours) is a non-decreasing func-
tion of ka i.e. the BP can not occur for such a power-law 
network. 

 CK Theorem 2. A converse to Theorem 1. Approxi-
mately stated, in the language of the CK abstract, (but in 
traffic terms): If every relationship between flow U and cost 
C is not a power law, with the same power s on each arc, 
given at least 6 arcs, one can arrange lengths of them so that 
Braess's paradox occurs. 

 CK Theorem 11. Shows that the BP can not occur in 
purely series-parallel networks 

 CK Theorem 12. Shows that “A two terminal network is 
series-parallel if and only if there is no embedded network 
having the WB configuration” (see Calvert [2] p14 and also 
Milchtaich [6]). 

 CK Theorems 11 and 12. Show that, in order for the 
Braess Paradox to occur in a six-arc two-terminal network, 
five of the arcs must form a WB as illustrated in Fig. (1A). 

                                                             
3More precisely, CK use the equivalent of a (Ca) = a (1) Ca

 |Ca|
(s-1) to deal 

with negative as well as positive potential differences Ca. 

Table 1. Equivalent Terms for Various Networks 

 

Network  Traffic Water Electrical Thermal Spring 

Node, Vertex Intersection Joint Junction, 

Node 

Junction Connection 

Arc, Edge, Link Road, Link, 

Arc 

Pipe Branch  Spring 

String 

Potential Time or GC Head = p Voltage 

= V 

Temperature 

= T 

Height 

Reference 

Potential (zero)  

Origin Sea Level Ground, 

Earth 

Heat Sink, 

Reservoir 

Height of 

Support 

Flow Traffic Flow Water Flow 

= U 

Current 

= I 

Heat-Flow 

= Q 

Force 

Consumptions Demands Source, 

Supply 

Input 

Currents 

Heat Input Weight 

of Load 

Power= 

Flow x Potential 

Vehicle Hours, 

System Cost 

Flow x p Power 

=I x V 

Q x T Work = 

Weight x Height 

In traffic networks GC represents Generalized Cost = Time plus the time-equivalent of other costs. This table repeats Table 1 of Penchina. Note: A node's potential equals the 
“length” (total generalized cost, GC, including tolls) of the min-GC path from the origin node to it (see Dial [5] p. 191). 

                                  Origin 

                      1            2 

                            5                                   

                    3                4 

                                      Destination 

A 

B C 

D 
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 Our proof proceeds by examining the effects of each pos-
sible way one can add a sixth arc to a five-arc WB. 

 There are nine ways in which the sixth arc can be added 
to this network, several of them equivalent, resulting in six 
non-equivalent independent additions. Sections 2.1 and 2.2 
discuss one way each; two ways are discussed in each of 
sections 2.3 & 2.4. 

2.1. Sixth Arc in Series at D or A 

 Fig. (1B) adds the sixth arc in series with the five-arc 
network at node D. An equivalent addition would be at node 
A. 

 If the total network flow U from origin A to destination 
D in the five-arc network of Fig. (1A) is U = UAD, then we 
could adjust CDE, the potential difference (arc cost) from D to 
E, to produce the same flow U = UAE from A to E in Fig. 
(1B). i.e. 

UAE (Fig. 1B)  = UAD  (Fig. 1A) = U 

 Since the sixth arc is added in series, 

UAD  (Fig. 1B)  = UAE (Fig. 1B) 

   = UAD (Fig. 1A) 

so the potential differences (costs) and flows in the original 
five arcs are unchanged by this addition of the sixth arc in 
series. Hence, with a constant flow (inelastic demand flow) 
the added sixth arc can not produce a Braess paradox if it did 
not already exist for the original five-arc network. Also, the 
sixth arc can not eliminate the paradox if it already exists in 
the five-arc network. 

 

Fig. (1B). A sixth arc DE is added in series at D. Equivalently the 

sixth arc could be added at A. Analysis shows that this sixth arc 

does not affect the existence or non-existence of the paradox. 

 Penchina [7] showed by a graphic analysis (graph repro-
duced here also as Fig. (2) which uses terminology from 
Frank [8]), that if the Braess Paradox can not occur with ine-
lastic demand, this implies there is no loop in the figure. 
Thus, the paradox can not occur for elastic demand either, 
even totally elastic demand i.e. even for a fixed potential 
from origin to destination (total user cost). So, if the BP is to 
occur in the six-arc network 1B, it must occur also in the 
five-arc network 1A. 

2.2. Sixth Arc in PARALLEL from A to D 

 See Fig. (1C). For any given fixed potential difference 
(arc cost) CAD (equivalent to totally elastic demand) across 
the original network (Fig. 1A), the sixth arc AD will not af-
fect the flows through the original five arcs. Thus, it can not 
affect the occurrence or non-occurrence of the BP in the 
original five arcs. Penchina [7] showed by a graphic analysis 
(graph reproduced here also as Fig. (2)), that if the BP can 
not occur with elastic demand, then there is no loop in the 
graph, and the paradox can not occur for inelastic demand 
either. Thus, if there is no paradox in the five-arc network, 
there is also no paradox in the six-arc network, whereas if 
there is a paradox in the five-arc network, there is also a 
paradox in the six-arc network 

 

Fig. (1C). A sixth arc is added in parallel across AD. Analysis 

shows that this sixth arc does not affect the existence or non-

existence of the paradox. 

2.3. Sixth Arc in PARALLEL with One of the Original 
Five Arcs 

 Fig. (1D) adds the sixth arc in parallel across arc 4. By 
symmetry, it is equivalent to add the sixth arc in parallel 
across arcs 1, 2, or 3. Another independent place to add a 
sixth arc is in parallel across arc 5. This is not equivalent by 
any simple symmetry to the addition across arc 4. Note, 
however, that the reasoning to be used in our proof is not 
symmetry dependent; the argument applies equally well to 
arc 5 (as well as to arcs 1, 2, and 3 without regard to the 
symmetry); i.e. applies to a sixth arc connected in parallel 
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with any one of the five original arcs. Thus, we treat them all 
together, using Fig. (1D) as our prototype. 

 

Fig. (1D). A sixth arc is added in parallel across CD Our analysis 

applies equally well to nodes AB, AC, BC, and BD. This analysis 

shows that a sixth arc with conductivity of power law s will neither 

cause nor prevent the Paradox. Analysis also shows that a sixth arc 

without power law s could cause the paradox, but it could then be 

produced equally well without the sixth arc if the original arc (arc 4 

in this figure) between the same two nodes (nodes CD in this fig-

ure) does not have power law s. 

 If the conductivity functions of the original arc 4 and the 
added sixth arc both obey the CK condition 

  4 (CCD) = 4 (1) (CCD)
s 

  6 (C6) = 6 (1) (C6)
s 

 When arcs 4 and 6 are in parallel, C4 = C6 = CCD so the 
effective conductivity function effective of both arcs in paral-
lel between nodes C and D is then 

 effective (CCD) = { 6 (1) + 4 (1)} (CCD)
s 
= equivalent (1) (CCD)

s 

where we have defined an equivalent conductivity function 
between any two nodes as 

 equivalent(C) = { 6 (C) + 4 (C)} 

 Thus, the effect of the two parallel arcs between C and D 
is the same as a single arc between C and D with a conduc-
tivity function that has the same power law dependence on 
cost as before. 

 If either the original arc 4 or the added sixth arc (or both) 
has a different conductivity function (not simply a power s), 
then the parallel combination also does not have a simple 
power law s. This parallel connection produces the type of 
six-arc network which CK have shown can be arranged to 
have a BP. Note, however, that it is equivalent to a five-arc 
WB network in which one arc, arc 4, does not have the sim-
ple power-law s. 

 Thus, if one can produce a BP with these six arcs, one 
can also produce it with five arcs, at least one of which does 
not have simply power law s. 

 

Fig. (1E). A sixth arc is added in series with arc 4 between nodes 

CD. Our analysis applies equally well to nodes AB, AC, BC, and 

BD. This analysis shows that a sixth arc with conductivity of power 

law s will neither cause nor prevent the Paradox. Analysis also 

shows that a sixth arc without power law s could cause the paradox, 

but it could then be produced equally well without the sixth arc if 

the original arc (arc 4 in this figure) between the same two nodes 

(nodes CD in this figure) does not have power law s. 
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Fig. (2). The graphical analysis of the Braess paradox in a Minimal Critical Traffic Network, reproduced from Fig. (2) of reference [7] 

Claude M. Penchina, “Braess Paradox: Maximal Penalty in a Minimal Critical Network”, Transportation Research, vol. A31(5), pp. 379-388, 

1997. Two lines have been added to illustrate an inelastic demand and a simple linear elastic demand, both passing through the “loop” region 

formed between the curves of cost vs flow with and without the “bridge” (arc 5 in Fig. (1)) of the Wheatstone Bridge. For the piecewise lin-

ear cost functions of Fig. (2), the loop region is a triangle. For more general cost functions, the loop region would be a more general figure. 

For more general elastic demands, the dash-dot line would not be straight. Adding the bridge is equivalent to using a large (infinite if the 

bridge has 0 cost) value of kBC. Removing the bridge is equivalent to using a small (zero) value of kBC. This analysis shows the importance 

of the “loop” between the graphs of the cost functions, with and without the bridge. The cost with/without the bridge is found at the intersec-

tion of the demand function with the solid/dashed line cost functions. The paradox occurs whenever the graph of the demand function 

(whether elastic or inelastic) crosses through this loop so that the cost is higher with the bridge than without. The labels at the top, for the 

various flow regions, are in the terminology of Frank [8]. See Table 1 for the equivalent variables in networks other than traffic networks. 
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 Because the CK theorem applies for any arbitrary arcs 4 
and 6 (with the appropriate restrictions on power law de-
pendence), in the final equivalent five arc network, arc 4 is 
also an arbitrary arc with the power law of the combination 
(power s if arc 4 and arc 6 each have power s, and not simply 
power s if either arc 4, or arc 6, or both are not simply power 
s) 

2.4. Sixth Arc in SERIES with One of the Original Five 
Arcs 

 Fig. (1E) adds the sixth arc in series with arc 4 between 
nodes C and D. By symmetry, it is equivalent to add the 
sixth arc in series with arcs 1, 2, or 3. Another independent 
place to add a sixth arc is in series with arc 5. This is not 
equivalent by any simple symmetry to the addition in series 
with arc 4. Note, however, that the reasoning to be used in 
our proof is not symmetry dependent; the argument applies 
equally well to arc 5 (as well as to arcs 1, 2, and 3 without 
regard to the symmetry); i.e. applies to a sixth arc connected 
in series with any one of the five original arcs. Thus, we treat 
them all together, using Fig. (1E) as our prototype. Note also 
that the argument does not depend on the order of the two 
arcs in series; e.g. it does not depend on which arc (4 or 6) is 
connected to node D. 

 In this series connection, neither C4 nor C6 is equal to 
CCD Instead, CCD = C4 + C6. However the flow UCD = U4 = 
U6. 

 If the conductivity functions of both arcs 4 and 6 are 
power law s, the series combination can be replaced by an 
equivalent single arc with conductivity function equivalent, 
which is also power law s,  

equivalent = equivalent(1) (CCD)
s  

where 

[ equivalent(1) ]
 -1

 = [ 4(1) ]
 -t

 + [ 6(1) ]
 -t

 

For convenience we introduced t= (s+1)
-1

 

 Thus, the effect of the two arcs in series between C and D 
is the same as a single arc between C and D with a conduc-
tivity function that has the same power law dependence on 
cost as before. 

 If either the original arc 4 or the added sixth arc (or both) 
has a different conductivity function (not simply a power s), 
then the series combination also does not have a simple 
power law s. This series connection produces the type of six-
arc network which CK have shown can be arranged to have a 
BP Note, however, that it is equivalent to a five-arc WB net-
work in which one arc, arc 4, does not have the simple 
power-law s. 

 Because the CK theorem applies for any arbitrary arcs 4 
and 6 (with the appropriate restrictions on power law depend-
ence), in the final equivalent five arc network, arc 4 is also an 
arbitrary arc with the power law of the combination (power s 
if arc 4 and arc 6 each have power s, and not simply power s if 
either arc 4, or arc 6, or both are not simply power s). 

3. CONCLUSION: BRAESS PARADOX WITH ONLY 
FIVE ARCS 

 We have now examined all nine possible ways to add a 
sixth arc to a five-arc WB network, and have shown that for 

each way, if one can arrange six arcs to get a BP, one can 
just as well arrange five arcs to get a BP; at least one of the 
five arcs must not have the same power law s as the others. 

 Since CK have shown that one such arc out of six is suf-
ficient to be able to arrange for a BP, the only conclusion is 
that one out of five is also sufficient, and (by CK theorems 
11 & 12) that these five must be arranged in a WB connec-
tion (Fig. 1A). 

 Thus, we have refined the CK theorem, which showed 
that six arcs (at least one of which does not have the same 
power law conductivity) with an embedded Wheatstone 
Bridge are sufficient to produce a Braess Paradox. 

Refined CK Theorem 

 Five arcs (at least one of which does not have the same 
power law conductivity) arranged in a Wheatstone Bridge, 
are Necessary and Sufficient to produce a Braess Paradox in 
a two terminal network (i.e. a network with one origin and 
one destination). 
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ABBREVIATIONS 

BP  =  Braess Paradox 

C =  Link/arc Cost 

CK =  Calvert and Keady [2] 

GC =  Generalized Cost (see caption for Table 1 and see  
   Dial [5] 

t =  (s+1)
-1

 

U =  Flow 

WB  =  Wheatstone Bridge 

 =  Number of pipes 

 =  Conductivity function 
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