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Abstract: An efficient and accurate measurement of congestion intensity helps investigate the traffic conditions at 
different road classes and provides useful information for transportation planning and traffic operation improvement. 
However, the existing traffic congestion intensity measurement models often suffer from two major problems: one is that 
there is no generally accepted method that can be used to classify the grades of congestion intensity, and the other is that 
the variables that have been incorporated into the exiting congestion intensity measurement models are often 
inter-correlated. In order to overcome these two deficiencies, this paper analyzes the ordinal characteristics of congestion 
intensity, and introduces the cumulative logistic regression into the congestion intensity measurement model. 

In the model development process, first it adopts the likelihood ratio test to validate the adaptability of the cumulative 
logistic regression and Wald test to select the independent variables. Then, it develops the measurement model of 
congestion intensity by using travel speed as the independent variable. The proposed model shows a determination 
coefficient (pseudo R2) higher than 0.77 in the goodness-of-fit test, and a prediction with the accuracy of 73.39% against 
the field observed data. Therefore, the proposed model can be effectively used to determine the traffic congestion intensity 
on different road classes. 
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INTRODUCTION 

 There is no single identifiable element that is able to 
describe all of travelers’ concerns about traffic congestion. 
Pisarski summarized four general components of congestion 
at the Workshop on National Urban Congestion Monitoring 
in May 1990 as a way to formulate an overall congestion 
index, including intensity, extent, duration, and variation [1]. 
Intensity, extent, and duration form a three dimensional 
framework to describe the magnitude of congestion, and 
variation is used to measure the reliability of the traffic 
network. 

 Congestion intensity is a measure from an individual 
traveler’s perspective, such as “congested” or “no 
congestion.” It reflects the severity of congestion that affects 
travel and measures the difference between the desired 
condition and the conditions being analyzed [1]. In the    
past years, extensive studies have been conducted in     
the field of congestion intensity evaluation. As we know,  traffic  
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congestion degrades the levels of mobility by generating 
increased travel time and delay [2], therefore most of the 
congestion intensity measurement methods are based on 
travel time and travel speed. The parameters that have been 
found fundamentally useful in congestion intensity 
measurement include travel speed, travel rate, delay rate, 
delay ratio, and relative delay rate [3][4]. Based on these five 
congestion-descriptive variables, Vaziri developed Highway 
Congestion Intensity Index (CII) with fuzzy set theory, 
which provided an alternative approach to the past normative 
index development methods and can be used to capture the 
perception of congestion intensity in future index 
development [5]. In recognition of the uncertainties 
associated with the derivation of measures of congestion, 
Hamad and Kikuchi developed a measure of traffic 
congestion based on fuzzy-rule inference. The proposed 
inference process allows the mechanism to combine different 
measures and also to incorporate the uncertainty in the 
individual measures so that the composite picture of 
congestion can be reproduced [6]. 

 However, two critical problems have been identified in 
the current congestion intensity measurement methods: one 
is that the determination of the threshold of congestion 
intensity indicators is usually based on the personal 
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experience of transportation planners and traffic engineers; 
there is no generally accepted quantification method that can 
be used to define levels of congestion. The other is that the 
variables that have been incorporated in the exiting 
congestion intensity measurement models are often 
inter-correlated, which somehow compromises the model’s 
accuracy. In order to address the incurring problems, this 
research proposes to use cumulative logistic regression to 
analyze the ordinal characteristics of congestion intensity, in 
which integers from “1” to “5” are used to grade on-road 
drivers’ own perception about the intensity of congestion 
with “1” indicating “severest congestion” and “5” indicating 
“no congestion;” and likelihood ratio test (LRT) is applied to 
validate the adaptability of the cumulative logistic 
regression. Then Wald test is used to select independent 
variables. This paper develops a congestion intensity 
measurement model by using travel speed as the only 
independent variable. 

 An accurate measurement of congestion intensity helps 
investigate the traffic conditions at different road classes and 
road segments. The results can not only be used in other 
aspects of congestion quantification, but also provide useful 
information for transportation planning and traffic operation 
improvement. The rest of this paper will discuss the 
development of this model in the sequence of data source 
and preparation, model variables, algorithm design, 
algorithm implementation, model validation and application, 
and conclusions. 

MATERIALS AND METHODOLOGY 

Data Source and Preparation 

 As mentioned above, congestion intensity is a measure 
from an individual traveler’s perception, therefore the source 
of data utilized in this research are collected by travelers 
driving on the real-word traffic network. The variance 
between the operating conditions on different road classes 
often results in people’s different sense of congestion, so the 
testing route is designed to cover different road classes, 
including expressways, major arterials, and minor arterials 
(including collectors). 

 In this research, the data collection was conducted 
between 6:00 to 19:30 in Beijing, China. Fig. (1) shows the 
testing routes in GIS map. The testing vehicle was driven on 
the pre-designed route repeatedly. During the experiment, 
on-board Global Positioning System (GPS) device is used to 
collect vehicle’s second-by-second speed data. The research 
inspectors sitting in the vehicle manually record their 

position and the number of roadway entrances/exits 
(signalized intersections), and grade the congestion intensity 
levels on different road classes during different time periods 
based on their own perception using integers from “1” to 
“5”, in which 1= severest congestion, 2= heavy congestion, 
3= moderate congestion, 4= slight congestion, and 5= no 
congestion. Drivers were solicited from different people 
groups. 

 

Fig. (1). Testing route for manual determination of congestion 
intensity. 

 More than 4,000 data records about congestion intensity 
are collected during the two-day’s on-road test. In order to 
have an effective evaluation of the model’s accuracy, the 
collected data are divided into two parts: one is used for 
model development, and the other is used for model 
validation. The modeling data sample size for the 
expressways, major arterials, and minor arterials and 
collectors are 1575, 390, and 305 respectively, which 
compose a sufficient sample size for conducting cumulative 
logistic regression analysis. Table 1 shows the modeling data 
sample size for the congestion intensity measurement. 

Model Variables 

 In this research, individual traveler’s personal perception 
on congestion intensity is considered as the dependent 
variable, which equals the integer from “1” to “5” with each 
of the number representing one level of congestion intensity. 

 After a quality control and mathematical analysis of the 
collected GPS data, 5 independent variables are determined to 
reflect real-world traffic operating conditions: (1) travel speed 
(km hr-1): which refers to the average speed within 1 minute; (2) 

Table 1. Modeling Data Sample Size for Congestion Intensity Measurement 

 

Road Class Sample Size 
Severe 

Congestion 

Heavy 

Congestion 

Moderate 

Congestion 

Slight 

Congestion 

No 

Congestion 
Total 

The Number of Samples 377 195 199 501 266 1575 
Express-Ways 

Proportion 24.51% 12.68% 12.94% 32.57% 17.30% 100% 

The Number of Samples 91 55 91 84 48 390 
Major Arterials 

Proportion 24.7% 14.9% 24.7% 22.8% 13.0% 100% 

The Number of Samples 68 75 48 61 53 305 
Minor Arterials & Collectors 

Proportion 22.30% 24.59% 15.74% 20.00% 17.38% 100% 
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delay ratio: which refers to the ratio of the difference between 
the travel rate per minute and the travel rate in the real-world 
traffic flow to the travel rate within that minute; (3) stop time (s 
km-1): which refers to the ratio of the number of seconds with 0 
speed within 1 minute to the travel distance within that time 
period; (4) the number of stops (the number of times km-1): 
which refers to the ratio of the number of times the speed 
changing from greater than 0 to 0 within 1 minute to the travel 
distance within that time period; and (5) the density of the 
expressways’ entrances/exits or the major and minor arterials’ 
signalized intersections (number km-1), which refers to the ratio 
of the number of entrances/exits or signals within 1 minute to 
the travel distance within that time period. During the model 
development process, the relationship between these 5 
independent variables and congestion intensity are evaluated by 
Wald test, and only the variables that show significant 
contribution to the modeling results will be selected. 

Algorithm Design 

 Cumulative logistic regression is applied in developing 
the congestion intensity measurement model. Since the 
real-world congestion intensity is divided into 5 categories 
(j=1, 2, …, 5), when y=1, y=2, …, y=5, the Logistic model 
contains 4 logit functions as expressed by Equation (1): 

ln
p1

1 p1
= 01 k xk

k=1

5

,

ln
p1 + p2

1 p1 p2
= 02 k xk

k=1

5

,

ln
p1 + p2 + p3

1 p1 p2 p3
= 03 k xk

k=1

5

,

ln
p1 + p2 + p3 + p4

p5
= 04 k xk

k=1

5

.

               (1) 

where 

p1, p2, p3, p4, p5 = The probability for severe congestion, 
heavy congestion, moderate congestion, slight congestion, 
and no congestion, p5 is used as the benchmark, p1+p2+ p3+ 
p4+ p5=1; 

x1 = Travel speed; 

x2 = Delay ratio; 

x3 = The number of stops within a certain time period; 

x4 = Stop time within a certain time period; 

x5 = The density of entrances/exits or signalized intersections; 

0k = Regression intercept; and 

k = Regression coefficient 

 The solution of the proposed congestion intensity 
measurement model can be determined by the method of 
maximum likelihood. However, in order to use this method, 
the model has to be further investigated from two aspects 
[7]: (1) evaluate the model’s proportional characteristics, 
which uses statistical methods to analyze the hypothesis of 
the proportional characteristics of the cumulative logistic 
regression model for the purpose of validating the model’s 
applicability; and (2) evaluate the significance of the 

independent variables to the modeling results, which 
examines the relationship between the 5 pre-defined 
independent variables and congestion intensity and 
determines the variables that will be included in the model 
development. The following section presents the results of 
the evaluation work. 

RESULTS 

Algorithm Evaluation Results 

Evaluation of the Model’s Proportional Characteristics 

 G-statistics (Likelihood Ratio Test) is used to evaluate 
the model’s proportional characteristics, as expressed by 
Equation (2), which reflects the errors occurred after all the 
independent variables are incorporated into the model and 
indicates the part of the change that cannot be explained by 
the independent variables [7]. 

G = 2(ln Lp ln Lk )                  (2) 

where 

Lp = Log likelihood of Model p, 

Lk = Log likelihood of Model k, and 

 Model p and model k refer to the models included in 
Equation (1) in turn. 

 The likelihood ratio test (LRT) computes x2  to 
determine if the model meets the proportional requirement 

for conducting a cumulative regression analysis. If x2  
shows a low level of significance, that is to say, if the 
calculated p-value is less than 0.05, then cumulative logistic 
model can be used in this analysis. 

 The five independent variables incorporated in this model 
are all continuous variables, which usually cause little data 
loss; therefore the original data are input into the model 
directly. Table 2 shows the evaluation results of the proposed 
model’s proportional characteristics for different road 
classes. It indicates that for all the three examined road 
classes, when the degree of freedom is 12, all the resulted 
p-values are less then 0.05. Therefore the proposed 
cumulative logistic regression model is suitable to conduct 
the congestion intensity measurement. 

Table 2. Likelihood Ratio Test on the Model with Five 

Independent Variables 

 

Road Class 
2
 

Degree of  

Freedom 
P -Value 

Expressways 1188.892 12 0.000 

Major Arterials 92.936 12 0.000 

Minor Arterials and Collectors 83.867 12 0.000 

 

Evaluation of the Significance of the Pre-defined 

Independent Variables 

 Wald test is used to determine if an independent variable 
should be included in a Logistic regression model [7, 8]. 
Under the Wald test, the bigger the Wald value is, or the 
smaller the p-value is, the more important the independent 
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variable means to the regression model; otherwise, the 
independent variable should be eliminated. The statistics of 
the Wald test is often denoted by u, which can be calculated 
using Equation (3), in which i stands for the sample value 

of the independent variable xi ’s regression coefficient, based 

on the design of the model algorithm, there are 5 
independent variables, therefore i refers to the integers from 
1 to 5; S

i
stands for the standard deviation of xi ’s 

regression coefficient. 

u =
i

S
i

                 (3) 

 Table 3 shows the results of the Wald test on the 5 
independent variables when the degree of freedom is set at a 
value of 1, in which each independent variable’s Wald value 
and its corresponding p-value are listed. Based on the results, 
the evaluation on the contribution of each independent 
variable to each road class’s congestion intensity can be 
conducted, from which we can determine the variables that 
should be included in the model development. 

 As to the expressways, Table 3 shows that the p-value for 
travel speed and delay ratio are both less than 0.05, which 
means that these two independent variables have significant 
contribution to the modeling results; however the p-value for 
stop time, the number of stops, and the density of 
entrances/exits or signals are all greater than 0.05, which 
means that these three independent variables do not have 
significant importance to the modeling results and should be 
excluded from the model. As to the major arterials, minor 
arterials and collectors, the p-value for delay ratio, stop time, 
the number of stops, and the density of entrances/exits or 
signals are all greater than 0.05, therefore they are not 
statistically important to the modeling results, which leads to 
the conclusion that in this analysis only travel speed should 
be included in the congestion intensity measurement model. 

 Based on the above illustration, travel speed and delay 
ratio are recommended to be included in the congestion 
intensity measurement for expressways, and travel speed 
becomes the only variable that should be included in the 
congestion intensity measurement for major arterials, minor 
arterials and collectors. In this research, we further 
investigate the necessity of including the two variables in the 
congestion intensity measurement for expressways. Input 
travel speed and delay ratio  into the  proposed  regression  
 

model for a second time to check the model’s proportional 

characteristics, the LRT shows x2  equals 1048.6 at the 6 
degree of freedom, and the resulted p-values are both less 
than 0.05, therefore, the logistic regression model is valid to 
be used in this analysis. Under Wald test at 95% confidence 
level, the Wald values for travel speed and delay ratio are 
178.517 and 21.174 respectively, both of which are greater 
than 3.841 (The 0.05 level of significance for the Wald test is 
3.841). The p-values for both of these two variables are 0.00, 
which indicates that travel speed and delay ratio both have 
important influence on the modeling results. However, as we 
can see, the Wald value of delay ratio (21.174) is far smaller 
than that of travel speed (178.517), which demonstrates that 
delay ratio has far less contribution to the expressway 
congestion intensity measurement than travel speed does. In 
addition, the standard deviation of the regression coefficient 
for delay ratio is 18.768, which is much bigger than that of 
travel speed and will result in a broader confidence interval 
under 95% confidence level. Due to the delay ratio’s 
comparatively smaller contribution to the modeling results 
and bigger standard deviation of its regression coefficient, 
this variable is ultimately eliminated from the variables that 
are to be included in the proposed logistic regression model 
for expressways. 

 In summary, travel speed is determined to be the 
independent variable that will be incorporated into the 
proposed cumulative logistic regression based congestion 
intensity measurement model for all road classes. Table 4 
shows the LRT results on the model based on travel speed. 

 The above table illustrates that at the degree of freedom 

3, x2 equals 1478.806 under LRT for expressways, and the 
p-value is less than 0.05. Therefore, the travel-speed based 
model meets the proportional requirement of cumulative 
logistic regression model and can be used safely in this 

analysis. Moreover, comparing with the x2  value under 
LRT in the travel-speed and delay-ratio based model, which 

equals 1048.6 at degree of freedom 6, the x2  generated in 
this analysis has a bigger value, which implies that the travel 
speed based model has a better goodness-of-fit. The above 
results also show that the travel speed based cumulative 
logistic regression model is valid to conduct congestion 
intensity measurement for major arterials, minor arterials, 
and collectors as well. 

 

Table 3. Wald Test on the Five Independent Variables 

 

Road Class Statistics Travel Speed Delay Ratio Stop Time 
The Number  

of Stops 

The Density of Entrances/ 

Exits or Signals 

Wald  182.45 16.56 0.17 1.32 0.97 
Expressways 

p -Value 0.00 0.00 0.68 0.25 0.35 

Wald 130.40 0.12 0.04 0.03 0.06 
Major Arterials 

p -Value 0.00 0.73 0.85 0.86 0.84 

Wald 120.12 0.10 0.03 0.02 0.04 
Minor Arterials & Collectors 

p -Value 0.00 0.53 0.55 0.63 0.64 
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Table 4. Likelihood Ratio Test on the Model Based on Travel 

Speed 

 

Road Class 2 
Degree of  

Freedom 
P -Value 

Expressways 1478.806 3 0.000 

Major Arterials 18.057 3 0.000 

Minor Arterials and Collectors 23.847 3 0.000 

 

Algorithm Implementation Results 

 The method of maximum likelihood is utilized to 
calculate the results of the travel-speed based cumulative 
logistic regression model for traffic congestion intensity on 
different road classes. Equations (4), (5), and (6) show the 
calculation algorithm, in which speed refers to the average 
travel speed within 1 minute with the unit of km/hr, p1，p2，
p3 ， p4 ， and p5 stand for severe congestion, heavy 
congestion, moderate congestion, slight congestion, and no 
congestion respectively. 

 For expressways: 

ln
p1

1 p1
= 6.803 0.348 Speed,

ln
p1 + p2

1 p1 p2
= 10.234 0.348 Speed,

ln
p1 + p2 + p3

1 p1 p2 p3
= 13.552 0.348 Speed,

ln
p1 + p2 + p3 + p4

p5
= 18.858 0.348 Speed.

       (4) 

 For major Arterials: 

ln
p1

1 p1
= 2.340 0.235 Speed,

ln
p1 + p2

1 p1 p2
= 4.263 0.235 Speed,

ln
p1 + p2 + p3

1 p1 p2 p3
= 7.381 0.235 Speed,

ln
p1 + p2 + p3 + p4

p5
= 10.664 0.235 Speed.

       (5) 

 For Minor arterials and collectors: 

ln
p1

1 p1
= 2.354 0.308 Speed,

ln
p1 + p2

1 p1 p2
= 5.225 0.308 Speed,

ln
p1 + p2 + p3

1 p1 p2 p3
= 7.408 0.308 Speed,

ln
p1 + p2 + p3 + p4

p5
= 10.715 0.308 Speed.

       (6) 

 Fig. (2) demonstrates the estimated values generated by 
the travel-speed based cumulative logistic regression model 
on different road classes. It shows the probability of different 
levels of congestion that may occur under different travel 
speeds. 

Model Validation Results 

 In order to evaluate the accuracy and reliability of the 
developed model, two methods are used in model validation: 
(1) evaluate the model’s goodness-of-fit by Cox and Snell’s 
pseudo R2 and Nagelkerke’s pseudo R2; and (2) evaluate the 
model’s accuracy by comparing the modeling results with 
the real-world observation results. 

Validate the Model by Using Statistical Tests 

 Pearson’s chi-square test cannot be applied when the 
dependent variables are categorical variables, therefore in 
this analysis, Cox and Snell’s pseudo R

2 and Nagelkerke’s 
pseudo R

2 are used to evaluate the model’s goodness-of-fit 
[7]. When the independent variable and the dependent 
variable only have a weak correlation, the pseudo R2 value 
tends to be close to 0; if the pseudo R2 value is close to 1, it 
means that the measurement model has a high level of 
goodness-of-fit. 

 Table 5 shows the results of the goodness-of-fit test on 
the proposed congestion intensity measurement model for 
different road classes. It demonstrates that Cox and Snell’s 
pseudo R2 and Nagelkerke’s pseudo R2 for expressways are 
0.875 and 0.898 respectively, and the corresponding pseudo 
R

2 for major arterials, and minor arterials and collectors are 
all greater than 0.77. The resulted pseudo R2

 values indicate 
that the proposed congestion intensity measurement model 
has a high level of goodness-of-fit. The expressways usually 
have a more stable traffic flow, therefore the congestion 
intensity measurement results for this road class tend to be 
more consistent, which results in a higher pseudo R2

 value. 

Table 5. Goodness-of-Fit Test on the Congestion Intensity 

Measurement Model 

 

Road Class 
Cox and Snell’s  

Pseudo R
2
 

Nagelkerke’s  

Pseudo R
2
 

Expressways 0.875 0.898 

Major Arterials 0.770 0.805 

Minor Arterials and Collectors 0.780 0.813 

 

Validate the Model by Comparing the Model Estimation 
with Field Observed Data 

 As has been explained in the section of data source and 
preparation, the data collected from the real-world traffic 
network are divided into two parts, one for model 
development and the other for model validation. In this step, 
the part of the field observed data that are used for model 
development are input into the congestion intensity 
measurement model. Table 6 shows the comparison between 
the modeling results and the rest of the field observed data. It 
demonstrates that the average accuracy rate for expressways, 
major arterials, and minor arterials and collectors are 
78.41%, 64.36%, and 59.02% respectively. In general, the 



Macroscopic Congestion Intensity Measurement Model The Open Transportation Journal, 2010, Volume 4    49 

accuracy rate of the developed congestion intensity 
measurement model reaches 73.39%. 

 Fig. (3) shows the comparison of the estimated traffic 
congestion intensity versus the observed values on different 
road classes. As shown in Fig. (3a), the modeling results on 
expressways display a high level of accuracy, in which the 

estimation for “severe congestion” reaches the highest 
accuracy rate, and the estimation for “no congestion” has a 
comparatively lower accuracy rate. This can be explained by 
the fact that usually vehicles have to drive constantly at a 
very low speed under severe congestion, and therefore the 
drivers tend to have similar perception on the congestion 
intensity. Fig. (3b, c) show the comparison results  between  

 

Fig. (2). Estimated values generated by travel-speed based cumulative logistic regression model on different road classes. 
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Fig. (3). Comparison of the estimated traffic congestion intensity versus the field observed values on different road classes. 

 

Table 6. Comparison Between the Congestion Intensity Measurement Modeling Results and the Field Observed Data 

 

Road Class 
Sample Size  

(the Number of Times) 

Severe  

Congestion 

Heavy  

Congestion 

Moderate  

Congestion 

Slight  

Congestion 

No  

Congestion 
Total 

Field Observed Data 413 210 179 500 273 1575 

Modeling Results 387 162 115 407 164 1235 Expressways 

Accuracy Rate 93.70% 77.14% 64.25% 81.40% 60.07% 78.41% 

Field Observed Data 98 65 85 88 54 390 

Modeling Results 87 28 59 50 27 251 Major Arterials 

Accuracy Rate 88.78% 43.08% 69.41% 56.82% 50.00% 64.36% 

Field Observed Data 74 66 55 56 54 305 

Modeling Results 47 38 26 33 36 180 
Minor Arterials 

& Collectors 

Accuracy Rate 63.51% 57.58% 47.27% 58.93% 66.67% 59.02% 
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the estimated congestion intensity and the field observed 
data on major arterials, minor arterials and collectors, from 
which a decreased level of accuracy for the modeling results 
is observed. This is mainly because on arterials and 
collectors, the traffic conditions are more complex and the 
traffic flow is easier to be interfered by various traffic 
management measures, which to some extent complicates 
the traveler’s determination of the level of congestion. 

DISCUSSION AND CONCLUSION 

 An efficient and accurate measurement of congestion 
intensity helps investigate the traffic conditions at different 
road classes and provides useful information for 
transportation planning and traffic operation improvement. 
This paper developed a macroscopic traffic congestion 
intensity measurement model based on cumulative logistic 
regression model. In order to improve the model’s reliability 
and accuracy, congestion intensity measurement data 
collected in the real-world traffic network in Beijing, China 
were used in the model development and validation, and 
specific algorithms were designed for estimating the 
congestion intensity on different road classes. 

 In the model development process, LRT is used to 
evaluate the proposed model’s proportional characteristics, 
which ensured a valid usage of cumulative logistic 
regression in this analysis. Wald test is applied to evaluate 
the significance of the 5 predefined independent variables 
(including travel speed, delay ratio, stop time, the number of 
stops, and the density of entrances/exits or signals) to 
congestion intensity measurement, the results indicate that 
travel speed has far more contribution to the modeling 
results, therefore it is determined as the independent variable 
included in the developed model. 

 In the model validation process, the statistical analysis 
shows an approximate 80% goodness-of-fit. By comparing 
the modeling results with the field observed congestion 
intensity data, the accuracy rate of the developed congestion 
intensity measurement model reaches 73.39%. Therefore we 
can see that the model developed in this research is accurate 
and useful for real-world congestion intensity measurement. 

 This research also discovered that the developed model 
has a better performance when it is used to estimate the 
congestion intensity on expressways, especially in terms of 
determining severe congestions; while more variance occurs 
when the model is used to measure the congestion intensity 
on arterials and collectors for a lower level of congestion 
intensity determination. Therefore it is recommended to 
further improve the congestion intensity measurement model 
by incorporating the parameters such as the factors that may 
influence traveler’s perception, roadway conditions, 
transportation facilities, and traffic management strategies 
into the development of the model. 
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