
60 The Open Transportation Journal, 2011, 5, 60-70

 1874-4478/11 2011 Bentham Open

Open Access

A Formal Model of Requirements

François Defossez*,1,2, Simon Collart-Dutilleul1,3 and Philippe Bon1,2

1Univ Nord de France, F-59000 Lille, France
2INRETS/ESTAS, 20 rue Élisée Reclus BP 317 59666 Villeneuve d’Ascq CEDEX, France
3École Centrale de Lille/LAGIS, Cité scientifique BP 48 59651 Villeneuve d’Ascq, France

Abstract: This paper introduces a methodology to analyze the safety of timed discrete event systems. Our case-study is
the level crossing, a critical component for the safety of railway systems. First, our goal is to take out the forbidden state
highlighted by a p-time Petri net modelling. This model deals with the requirements of the considered system and has to
contain all the constraints that have to be respected. Then we describe a process identified as a solution for the system
functioning. This method consists in exploring all the possible behaviors of the system by means of the construction of
state classes. Finally, we check if the proposed process corresponds to the model of requirements previously built.

Keywords: Temporal and safety requirements, requirement engineering, traceability, modelling, Petri net, Railway transport,
level crossing.

INTRODUCTION

 This paper deals with the general problem of safety
critical systems processing. The objective is to describe a
methodological approach which proposes to use formal
modelling in order to provide some tools for requirement
engineering.

 In order to fulfill some needs in regards to the safety of
railway systems, European specifications and standards are
introduced and materialize in different practices and cultures.
Thereby, for example, Technical Specifications for
Interoperability are regulation texts approved by the
European Union and which recommend the application of
standards such as the 50128 CENELEC standard [1]. It deals
with software for railway control and protection systems and
brings up notions such as requirements and tracability. The
authors are convinced that formal methods give a relevant
contribution to answer the problem considered. Actually,
formal methods allow a mathematical expression of
requirements. However requirements need to be represented
as simply and non ambiguously as possible. Requirements
also need to be assessed by professional specialists. We put
forward the hypothesis that the UML notation, Petri nets and
the method are widely used to model railway systems.
Among other applications, they are used to model and
validate real-time distributed railway systems. A benefit of
using UML [2] is its status as an international standard and
its widespread use in the software industry. It is used to
identify the requirements and describe the system. Its
graphical nature makes discussions easier for the different
actors of a project. Nevertheless, it is only a semi-formal
modelling tool. Then, the method, introduced by J.R.
Abrial [3] is a formal method for the development of

*Address correspondence to this author at the INRETS/ESTAS, 20 rue
Élisée Reclus BP 317 59666 Villeneuve d’Ascq CEDEX, France; Tel: + 33
3 20 43 84 07; E-mail: françois.defossez@inrets.fr

specifications and their refinements to an implementation,
already used in the railway industry [4]. Its notation may be
complex and difficult to understand. Moreover, a model
analysis requires mathematical skills which are unusual in
industry. Finally, Petri nets [5] combine three important
features: a graphical representation, a dynamic behavior and
an abstraction of the treatments.

 For these reasons, we propose to use Petri nets as a
graphical formal model. Graphical tools are used to express
first-level requirements which are strong and mandatory
constraints. Consequently, their violation is strictly
forbidden. The model provided herein can highlight
mathematical dependencies ensuing from first-level
requirements. This aspect defines the main contribution of
this paper. During the different process phases, requirements
have to be sharply propagated into the downstream phases.
Several types of requirements can be identified; first-level
(source) requirements resulting from norms (rules) and
informal specifications (expression of needs), first level
dependencies coming from first level requirements
propagation, technical requirements related to technical
choices and then technical dependencies. In order to make
traceability easier, requirement propagation has to be
document for verification purposes.

 As seen previously, the paper deals with requirement
engineering, but more precisely, it focuses on temporal
requirements.

 This paper is divided into 6 parts. After this introduction,
the approach is argued and the methodology is detailed by
presenting the different models, their use and the state
classes for the requirements assessment. The fourth part
illustrates the method with a railway case study. The fifth
one presents some discussions around the informal
specification and our methodology efficiency. Then the last
part gives some conclusions and prospects.

A Formal Model of Requirements The Open Transportation Journal, 2011, Volume 5 61

2. APPROACH

 In safety critical systems processing, requirement
engineering is an important phase. We are convinced that
graphical tools must be used to model them. In order to
assess the requirement fulfillment, we also need
mathematical tools. Nevertheless, when the assessment
cannot be proved mathematically, a professional specialist is
needed. Actually, from an ergonomic point of view, a
graphical tool provides a better understanding of models.

 The work described in this paper aims at assisting
specification assessment through a rigorous requirement
modelling. It starts when all the high level requirements have
been elicited from the informal specifications, with some
well-defined and identified safety critical entities. Then, a p-
time Petri net is built in order to model safety temporal
requirements. This model captures the set of the valid
temporal behaviours.

 The next step consists in building a process model by
mean of a t-time Petri net. This model corresponds to a
proposed solution which still has to be checked regarding
requirements. In order to guaranty requirements traceability,
some rules must be fulfilled for this model construction in
order to allow consistency checking with the requirements
model. Consistency checking is an important problem but
not developed in this paper.

3. METHODOLOGY

 Petri nets formalism is a well-known graphical,
executable technique for the specification and analysis of
concurrent, discrete-event dynamic systems. Fundamental
properties and theoretical definitions are presented in [6].

 In order to integrate the time window constraints in the
Petri net model, dedicated tools named time Petri nets have
been introduced. These tools have both modelling abilities
and strong structural properties and therefore seem able to
provide a representation of the system adapted to our goal.
First we describe the two time Petri nets that are used in this
paper. Then a comparison of these two models will be done
in order to justify our modelling choices. Finally the state
classes are described. In this section, all the steps of the
methodology are illustrated by a theoretical example.

3.1. Relevant Tools for Particular Problems

 Temporal requirement can be modelled by time interval
associated to nodes of a discrete event system model.
Nevertheless several modelling tools contain this kind of
constraints: timed automata, t-time Petri nets and p-time
Petri net etc. Let us recall those requirements are extracted
from an informal specification where the functioning is,
most of the time, only partially specified. Then, the
modelling tools are divided between two classes of model:
first ones have associated functioning and others have not.
Actually, the introduction of a local functioning in a
requirement model is not appropriate. Indeed, in this case
some available solutions are rejected with no reason. Timed
automata [7] and t-time Petri net [8, 9] have their own
embedded functioning. Actually, they are well known
efficient tool for modelling, controlling, simulating a system
which already exists. More particularly, t-time Petri net are a
widespread tool for temporal protocol modelling [10]. Thus,

considering a system which is completely defined, this last
tool is particularly relevant.

 P-time Petri nets belong to another class of modelling
tool. They have no default temporal functioning. When a
duration belongs to a time interval, no assumption is locally
made on the effective value of this duration. Considering this
particularity, p-time Petri net are a good tool for high level
requirement modelling [11]. As an illustration, performance
evaluation can be performed taking only into account
requirements. The immediate drawback of the previous
singularity is that there is no dedicated efficient temporal
simulation tool. Nevertheless the -time Petri net models all
the available behaviors.

 Finally, we propose p-time Petri nets for requirement
modelling and t-time Petri nets to model a completely
defined system. Actually, two different tools are used to
model two different kinds of problem, whereas they are
really closed from a semantic point of view. This last aspect
is important for the checking step between the requirement
and candidate process models.

3.2. P-Time Petri Nets for Requirements

 The formal definition of a p-time Petri net [12] is given
by a pair (R, I) where:

• R is a marked Petri net,

• where pi with

 The interval Ii defines the static interval of staying time
of a mark in the place pi belonging to the set of places P.
When , it means there is no upper bound
specification for the associated place pi. A mark in the place
pi is taken into account in transition validation when it has
stayed in pi for a duration of at least ai and no more than bi.
After the duration bi, the token will be "dead". This last
aspect is used for temporal requirement specification. In fact,
the death of a token represents a non-respect of the
specifications: it corresponds to a class of forbidden states.
Contrary to the t-time extension, the evolution of a p-time
Petri net is characterized by both the firing of transitions and
the death of tokens. This tool has been introduced to model
the behavior of production systems submitted to strong
synchronization constraints. For example, in an industrial
context of a production line where some products have to be
soaked in chemical baths, the death of a token represents a
product that stayed in a tank for too long [13]. One of its
limitations is that p-time Petri net cannot easily model time-
outs. This model is also relevant in a context of temporal
safety requirements modelling.

 In order to illustrate the different steps of our
methodology, the following theoretical example is given:

• Let us consider a production process with a transport
phase,

• There is a deadline of consumption date, named max,
for the product.

 Fig. (1) gives the p-time Petri net for this specification.
Transition production (resp. consumption) represents the
production (resp. the consumption) phase of the process.

62 The Open Transportation Journal, 2011, Volume 5 Defossez et al.

Place p3 represents the deadline of consumption constraint,
p2 the transport duration (at least d time units) and p1 allows
to reinitialize the process.

Fig. (1). Requirements modelling illustration.

3.3. T-Time Petri Nets for Process Modelling

 The formal definition of a t-time Petri net [19] is given
by a pair (R, I) where:

• R is a marked Petri net

• where ti with

 The static interval function I associates with each
transition ti a temporal interval [ai, bi] that represents the set
of its possible firing dates counting from its enabling date
(is the set of positive rational numbers). In a t-time Petri
net, the events to consider are the enabling date of a
transition, the beginning and the end of the temporal interval
associated to the considered transition and finally the
effective firing date of the transition. The belonging of the
firing date to the interval can be expressed with simple
temporal constraints. Thus, the notions of enabling and
validating transitions are not still equivalent: a transition can
be fired only if both conditions of marking and time are
verified. This tool has been introduced to model and analyze
communication systems, particularly to describe and validate
telecommunication protocols. Moreover, it can be
generalized to model procedures to be followed. Indeed, its
ability to model uncertainties, by means of the intervals,
appears as very useful in such a case. Finally, one of the last
advantages of this tool is to be able to model watchdogs and
time-outs. A time-out is a system able to verify if a given
event happens before a given time, otherwise it indicates an
error.

 In order to check that a process model corresponds to a
requirements model, a projection Pr is defined as:

• Pr is a relation,

• Sol is the set of process model nodes,

• Req is the set of requirements model nodes,

• Pr (Sol) = Req.

 It means that all the nodes of the requirements model
have to possess a corresponding node in the process model.
In order to respect that, a guideline to build the process
model is recommended. Fig. (2) gives the t-time Petri net

which models a process answering to the specifications
given by Fig. (1).

Fig. (2). Process modelling illustration.

 We can notice that transitions (resp. places) keep the
same name except the place modelling the deadline of
consumption constraint (Table 1). It is transformed into a
transition, fired only if the limit max is reached. In such a
case, the specification is no more fulfilled.

 Let us note that several nodes in the process model can
be projected on a single node on the requirement model. It
can particularly happen in the case of a watchdog, built with
several transitions and places in the process model, which
corresponds to a temporal constraint modelled by a timed
place in the requirement model.

Table 1. Corresponding Nodes Between the Two Models

Nodes Fig. (1) Nodes Fig. (2)

Production Production

Consumption Consumption

P1 P1

P2 P2

P3 Tp3

3.4. State Classes

 The analysis of Petri net can be done thanks to two
methods: the structural analysis and the enumerative
one [20]. The latter is used in order to check the dynamic
properties of the system. This approach is based on the
construction of the coverability tree. The checking that
forbidden states are not reachable or the analysis of temporal
constraints between events of a given scenario require the
exhaustive search of all the states of the system. However, in
case of temporal constraints, the states of the system are in
infinite number, which makes impossible their direct
exploration by enumeration because of the state-space
explosion. Therefore, it is necessary to cover these states by
a finite number of classes which are abstractions for
symbolic states. As a result a class graph can be built in
order to explain the states and their associated temporal
constraints, which allow the transition from a class to
another. In fact, the notion of state classes allows an analysis
similar to the coverability tree method for the time models.
Overall, the final purpose of this work is to check if the
projection of the set of the state classes generated from the t-
time Petri net on the requirement space is included in the set

A Formal Model of Requirements The Open Transportation Journal, 2011, Volume 5 63

of state classes generated from the p-time Petri net. We can
express this purpose in a formal way. Let us denote:

• Sr: set of state classes generated from the p-time net
modelling the requirements,

• Ss: set of state classes generated from the t-time net
modelling the proposed solution as process,

• Req: the requirement space, i.e. the set of
requirements model nodes,

• R(A,B): an application which represents the projection
of A on B.

 As a result, we want to check if:

• R(Ss,Req) Sr.

3.4.1. State Classes Construction

 In a p-time Petri net, as a classic Petri net, a state can be
reached from the initial state by a firing sequence, named s.
For each transition of this sequence, its firing instant, named
u, is associated. Let us consider the set of the reachable
states from the initial one by firing of all feasible u
corresponding to s: the set of all reachable state from the
initial one by firing s is now define. This set defines the state
class associated to s. The initial class, C0, contains only one
state, the initial one. Then, a state class is a pair C= (M, D)
where:

• M is the class marking,

• D is the potential temporal firing domain.

 Let us assume that the transition ti is fireable at the
instant from the class C= (M, D). This fire generates the

following class C’= (M’, D’) which is computed as follow:

1. M’ is computed using usual incidence matrix,

2. D’ is computed from D.

T he firing domains D of p-time Petri net state classes can
be defined as a solution of these inequations:

1. q ,

 where P is the set of place and J, the set of marking.

2. ,

 where .

 The computation of D’ from D is not detailed but just
illustrated by Table 2. The formal algorithm can be found
in [14]. Fig. (3) gives the graph of state classes ensuing from
p-time Petri net represented in Fig. (1).

Fig. (3). Graph of the state classes of the p-time Petri net theoretical
example.

Table 2. Markings Corresponding to the State Classes of Fig.

(1).

Class Marking Domain

C0 1

C1 2, 3

 The all description of t-time Petri net state classes
construction is not defined here. [15] defines the theoretical
definition of this construction and the TINA1 (TIme petri Net
Analyser) software tool is used in order to generate the t-time
state classes [8]. Fig. (4) gives the graph of state classes
ensuing from t-time Petri net represented in Fig. (2). Its
marking is illustrated by Table 3.

Fig. (4). Graph of the state classes of the t-time Petri net theoretical
example.

Table 3. Markings Corresponding to the State Classes of Fig. (2)

Class Marking Domain

C0 1

C1 2

C2 ø ø

3.4.2. Projection and Consistency Checking

 As shown in paragraph III.C, structural consistency is
applied by construction. The behavioral consistency has to be
now checked using the corresponding state classes graphs. Let
us recall to mind that the evolution from a state class to another
ensues from a transition firing. Let us denote by Pe(Ss,Req), the
subset of Ss, with Ss the set of classes generated from the t-time
net modelling, the set of state where all selected state classes are:

1. Input state classes of a transition t firing with , or

2. Output state classes of a transition firing of Req.

 We can claim the consistency when:

 Obviously, the illustrating example respect the conditions
mentioned below. The consistency of the two models (Figs. 1,
2) can be checked.

4. CASE STUDY

4.1. Level Crossing Case Study

 To illustrate the approach, a radio-based level crossing
control system is designed. This example is inspired by [16]

1 http://www.laas.fr/tina/

64 The Open Transportation Journal, 2011, Volume 5 Defossez et al.

and is composed of a single-railway track which crosses a
road at the same level (Fig. 5). Our purpose is not to discuss
about the specifications relevancy, but to propose a
methodology which helps to assess that the process respects
the specifications.

 This theoretical case study is intended to scientific
research and its specifications have both advantages of being
more realistic and sizeable than theoretical traditional
examples and less complex than industrial projects. For
example, it has been chosen as an application case study in
[17]. The crossing zone is named danger zone. The most
important security rule is to avoid collision by prohibiting
road and railway traffic simultaneously on level crossing.
The railway crossing is equipped with barriers and road
traffic lights to forbid the car passage. When they are
switched off, road users (drivers, pedestrians,) can cross. In
the other case, the level crossing is closed and railway traffic
has priority. Half barriers are used in order to permit the
evacuation of vehicles from the danger zone after the level
crossing closing.

 The main difference between this technology and the
traditional control of level crossings is that signals and
sensors on the route are replaced by radio communication
systems embedded in the train and in the level crossing. This
offers cheaper and more flexible solutions, but also shifts
safety critical functionality from hardware to software.
Instead of being detecting by a sensor, the train computes the
position where it has to send a signal to secure the level
crossing. Therefore the train has to know the position of the
level crossing, the time needed to secure the level crossing,
and its current speed and position, which are measured by an
odometer. When the level crossing receives this command, it
switches on the traffic lights, first the yellow lights, then the
red lights, and finally closes the barriers. When they are
closed, the level crossing is considered as safe for a given
period of time. The stop signal, indicating an insecure
crossing, is also substituted by computation and

communication. The train requests the status of the level
crossing. Depending on the answer the train brakes or passes
the crossing. The level crossing performs self-diagnosis and
automatically informs the central radio office about defects
and problems.

4.2. Temporal Requirements

 Since there are no barriers for the exit lanes, road users
possibly may enter the crossing area on the opposite lane.
Although this behavior constitutes a severe contravention of
the traffic regulations, it can be frequently observed due to
long waiting times at closed level crossings. This has to be
taken into account for the level crossing control by
respecting a maximum closure time.

 In order to avoid long waiting times for road users before
a closed level crossing, the case study specifications lay
down that the train has to pass the level crossing before a
maximum arrival time of 240 seconds, from having sent the
activation order to the level crossing. If the train detects that
it cannot arrive at the level crossing within the specified time
and is still able to stop before the danger point, it has to
cancel the activation order by sending a deactivation order to
the level crossing. In this case, the train applies a braking
curve ending at the danger point. The level crossing will be
open upon receipt of the deactivation order. The passing of
the unclosed level crossing requires the driver to confirm the
safe state of the level crossing.

 In order to take into account such temporal constraints,
we need a formal modelling tool able to provide a
representation of the level crossing adapted to our purpose.
Consequently, we have chosen time Petri nets to model the
system.

4.3. The Requirements Model

 This section illustrates, on the level crossing case study,
the first step of the proposed methodology. It contains a
formal description of the requirements model using p-time

Fig. (5). Level crossing case study.

A Formal Model of Requirements The Open Transportation Journal, 2011, Volume 5 65

Petri nets. Then the state classes of this model are built in
order to extract all the reachable states of the model.

4.3.1. P-Time Model

 We focus on the needs of the system in building a
requirements model that contains every constraint that must
be fulfilled. This model, built with a p-time Petri net, takes
particularly into account the expression of temporal
constraints taken from the specifications.

 This requirements model based on p-time Petri nets has
already been presented in [11] and [18]. These papers aim at
building safe control specifications. Namely, they propose
some methods to avoid forbidden states associated with non
respects of the temporal requirements. In this section, we use
the same requirements model, which can be found in Fig.
(6).

Fig. (6). Requirements model using p-time Petri net.

 To sum up, there are two sequences synchronized by
event occurrences. Let us introduce the time constraint on
the place p13: it models the limitation for the level crossing to
be closed. A process must be proposed in order to avoid that
a token becomes "dead" after having stayed more than 240
seconds in p13. Indeed, this corresponds to a non respect of
the temporal specifications. Such a process can be found in
the case study.

 Our goal is to build the state classes of this model in
order to compare them with the projection of the state classes
of the process model on the requirement space.

4.3.2. State Classes of the p-Time Model

 The chosen approach consists in obtaining a finite
representation of the reachable states by the construction of a
coverability graph [14].

 A state is reachable from the initial state by the execution
of a firing sequence (s). For each transition of this sequence,

a firing time (u) is associated. So, a class state associated to
the sequence (s) is a set of reachable states from the initial
state by the firing of the sequence (s). Therefore it is a
couple C= (M, D) with:

• M: the marking of the class,

• D: the potential firing domain of the class.

 Fig. (7) represents the graph of classes of the p-time Petri
net described by Fig. (6). It is composed by classes Ci and
the arcs connecting them. An arc (Ci, Cj) represents the firing
of the transition leading from Ci to Cj. For example, the arc
connecting C0 to C1 corresponds to the firing of the Radio
Signal Sending transition.

Fig. (7). Graph of the state classes of the p-time Petri net.

 In Table 4, the potential firing domains are represented.
Actually, a domain is associated to each mark of a given
class. For example, the temporal constraints for C1 are:

•

66 The Open Transportation Journal, 2011, Volume 5 Defossez et al.

•

•

 The upper bound of is due to temporal requirements
for lights (9 s) and barriers (240 s). This is an example of
temporal requirements expression through a couple of
parallelism and synchronization transition [18, 19]. The
description of the 17 classes of the graph of Fig. (7) can be
found in Table 4. The notation in Table 4 is simplified, as
there is only one token per place, the exponent is not
specified.

 We built the graph of classes of the requirements model.
Likewise, the next step is to build the graph of classes of the
proposed process model in order to compare both of them

and thus to check if the process fulfils the requirements
model.

4.4. The Process Model

 The second step of the proposed methodology is now
presented. Its purpose is to describe a process identified as a
solution of the system functioning. This process model
corresponds to a solution described in [16]. It is modelled by
means of t-time Petri net. The method consists in exploring
all the possible behaviors of the system by means of the
construction of state classes [20].

4.4.1. T-Time Model

 As shown in the part III.C, a static interval function I
associates, with each transition ti, a temporal interval [ai, bi]

Table 4. Markings Corresponding to the State Classes of the p-Time Model

Class Marking Domain Class Marking Domain

C0 5,14 C9 1,6,8,11,13

C1 1,6,14

C10 2,6,8,11,13

C2 2,6,14

C11 2,6,8

C3 2,9

C12 1,6,12

C4 2,10,13

C13 5,12

C5 2,7,11,13

C14 1,9

C6 3,11,13

C15 1,10,13

C7 4,11,13

C16 1,7,11,13

C8 5,8,11,13

A Formal Model of Requirements The Open Transportation Journal, 2011, Volume 5 67

that represents the set of its possible firing dates counting
from its enabling date.

Fig. (8). Process model using t-time Petri net.

 Fig. (8) models a given solution to fulfill the
requirements that have been described in section IV.B.

 The two sequences representing the behavior of the train
and the level crossing can be found on this model. From p1 to
p4, this model is similar to the model of Fig. (6), except that
the place p13, which was a timed one on the p-time model, is
replaced with a watchdog in this model. Indeed, this t-time
model deals with a scenario that is proposed to fulfill the
requirements. Table 5 illustrates the relation.

 If a token stays more than 240 seconds in p10
(respectively p11), the transition t11 (resp t12) is fired and the
operating procedure aiming at avoiding the opening of the
barriers when a train is in the level crossing is engaged. This
procedure can be considered as an answer to the death of a
token in the timed place p13 in the p-time model. So the next
paragraph describes the behavior of the system in such a
case.

 First there are two possibilities of evolution: either the
train which has sent a radio signal to the level crossing is still
in the crossing area (that means that a token is in one of the
places p1 to p4) or it has gone past it (that means that there is
a token in p8).

 In the first case (that means that t12 is fired), the operating
centre has to decide if the train is stoppable or not. If it is
stoppable, the train stops before the danger point and the
procedure of radio signal sending is reinitialized (t15 is fired).

 Otherwise, the level crossing control system has to wait
that the train has passed on the exit sensor (t16 is fired).

 In the second case, the operations centre orders the
opening of the barriers (t11 is fired).

Table 5. Corresponding Nodes Between the Two Models

Nodes of Fig. (6) Nodes of Fig. (8)

 The nodes corresponding to the place p13 in the process
model are out of the specifications because they represent a
recovery mode not demanded in the specification.

4.4.2. State Classes of the t-Time Model

 In [15], the building of the state classes for the t-time
model can be found. Fig. (9) represents the graph of classes
of the p-time Petri net described by Fig. (8) and in order to
keep figure readable, transitions don’t label arc as in Fig. (7).

 Table 6 doesn’t list the potential firing domains in order
to keep table readable. The building of these domains can be
found in the literature. Moreover, a tool called TINA can be
used to build the state classes for the t-time model. For
example, the class C0 has the following temporal constraints:

•

•

 And for:

•

•

 The underlined classes of this model correspond to those
which are directly included on the projection of the classes
of the p-time one. They correspond to a recovery process if
the temporal requirement of 240 seconds is not respected.

 We notice that the state classes dealings with the
watchdog don’t correspond to the requirements. The
projection excludes all the classes that can be only reached
by t11 or t12, which are transitions of failure mode
management.

5. DISCUSSION

 Fig. (8) describes a given solution proposed by [16] in
order to fulfill its requirements model. The underlined
classes in Table 6 correspond to the requirements model. For
these classes, we have the same marking than in Table 4 but
not the same temporal domains. Indeed, the proposed
solution gives the control of temporal requirements to the
train controller. Therefore, in normal mode, the proposed
solution fulfils the specifications.

 Furthermore, the given solution proposes to manage the
recovery process, even if it is outside the informal
specifications. The requirements model doesn’t precise what
the specifications become in a failure mode. Thereby, our

68 The Open Transportation Journal, 2011, Volume 5 Defossez et al.

work extracted an explicit temporal requirement: the
maximum closing time of 240 seconds for the level crossing.
Nevertheless, we noticed that this creates a conflict with an
implicit but essential requirement: it is strictly forbidden to
open the level-crossing barrier if a train is in the danger
zone. We aren’t able to certify unwritten implicit rules. In
such a case, an expertise is necessary to clarify the
specifications.

 Actually, the automatic assessment of requirements
depends on what is effectively written in the informal

specifications: when there are implicit (non written)
requirements, a professional specialist is needed in order to
express them. Moreover, extracting requirements from the
informal specification is only one step of the process of
solution construction. In fact, explicit identification of
critical entities which are directly relevant to high level
requirements is also needed at each step. To assess a
solution, the traceability chain has to be not broken.
Otherwise, the assessor is not able to certify that the solution

Fig. (9). Graph of the state classes of the t-time Petri net.

A Formal Model of Requirements The Open Transportation Journal, 2011, Volume 5 69

model fulfils requirements without involving an independent
professional specialist.

 Another interesting aspect is that our methodology can
naturally be connected with a global conception process
based upon graphical tool. For instance, using UML
notation, the functional analysis may be performed with use
case diagrams, structural analysis with class diagrams,
behavior analysis with state diagrams.

 In the case of UML modeling, the state diagrams are
particularly important and are the connecting points with our
methodology. Anyway, whatever modelling tool, the
different system states and transitions which are safety
critical have to be identified and well defined in order to be
taken into account in the next steps.

CONCLUSIONS AND FUTURE WORK

 In this paper, a methodological approach based upon time
Petri nets, in order to manage temporal requirements, was
presented. To this end, the requirements model was built
from the informal specification by means of p-time Petri
nets. Then, the state classes of the model have to be built in
order to capture the behavioural validity domain. In order to
ensure traceability, the critical nodes have to be highlighted
and explicitly transmitted from the requirements model to
the process model. The process model is then made by
means of t-time Petri nets. The next step consists in building
state classes graph in order to check that the process model
behavior respects the requirements. A correct implementat-
ion of the transmission of critical nodes has allowed an
automatic consistency check.

 Our methodology was illustrated on a level crossing case
study. This example is particularly relevant, because it
provides an illustration for the two different scenarii of the
solution construction process. The high level requirements
are totally fulfilled by our proposed solution in normal mode,
but an implicit requirement was highlighted in failure mode.
Our methodology assesses the consistency between the
requirements model and the solution model in normal mode
but is unable to assess failure mode without the help of a
professional specialist.

 In order to integrate this methodology in the global issue
of safety requirements, we propose an approach based on

abstract high level Petri nets, of which p and t-time Petri nets
are a subclass. In future works, we suggest that the use of a
process allowing the complementary strengths of the B
formal method [3] and the Petri net model to be used
together in order to promise increased reliability of a railway
traffic control application [21]. The aim is to provide some
sharp results concerning time parameters, requirements
traceability and formal validation, and a global approach
including all functional aspects during all the conception
process.

REFERENCES

[1] Railway applications. “Communications, Signalling and Processing
Systems - Software for railway control and protection systems”,
2001.

[2] Unified modelling language version1.4. Technical report, OMG,
2001.

[3] J.R. Abrial,. The B Book - Assigning Programs to Meanings.
Cambridge University Press, August 1996.

[4] P. Behm, P. Benoit, A. Faivre, and J.M. Meynadier. METEOR : A
successful application of B in a large project. In J. M. Wing,
J. Woodcock, and J. Davies, Eds, FM’99 - Formal Methods,
number 1709, pages 369-387. Springer Verlag, September 1999.

[5] C.A. Petri, Communicating with Automata. Thèse de doctorat,
Université de Darmstadt, 1962.

[6] T. Murata, “Petri nets: Properties, analysis and applications”,
Proceedings of the IEEE, vol. 77, no. 4, pp 541-557, 1989.

[7] R. Alur, and D. Dill, “A theory of timed automata”,. Theoretical
Computer Science, vol. 126, pp.183-235, 1994.

[8] B. Berthomieu, P.-O Ribet, and F Vernadat, “The tina tool:
Construction of abstract State space for petri nets and time petri
nets,”, International Journal of Production Research, vol. 42, no.
14, pp. 2741-2756, 2004.

[9] B. Berthomieu, and F. Vernadat, “State class constructions for
Branching Analysis of Time Petri Nets”, In H. Garavel and J.
Hatcliff, Eds. TACAS, of Lecture Notes in Computer Science,
Springer USA, vol. 2619, pp. 442-457, 2003

[10] P. Merlin, A Study of the Recoverability of Computer Systems.
PhD thesis, University of California, Irvine, California, 1974.

[11] F. Defossez, P. Bon, and C.S. Dutilleul, “Formal Methods and
Temporal Safety Requirements: a Level Crossing Application. In:
E. Schnieder and G. Tarnai, Eds, Formal Methods and Automation
and Safety in Railway and Automotive Systems, FORMS/
FORMAT’2007, Braunschweig, Germany, Jan PP. 219-230, 2007

[12] W. Khansa, P. Aygalinc, and J. P. Denat, Structural Analysis of P
Time Petri Nets. In CESA ’96, Lille, France, 1996.

[13] N. Jerbi, S. Collart Dutilleul, E. Craye, and M. Benrejeb, Robust
control of multi-product job-shops in repetitive functioning mode.
In IEEE Conference on Systems, Man, and Cybernetics (SMC’04),
The Hague, Netherlands, vol. 5, pages 4917-4922, October 2004.

Table 6. Markings Corresponding to the State Classes of the t-Time Model

Class Marking Class Marking Class Marking Class Marking

C0 5,14 C10 2,7,11,13 C20 3, 15 C30 2, 6, 12

C1 1, 6,14 C11 1, 16 C21 4, 11, 13 C31 5, 12

C2 2, 6,14 C12 1, 7, 15 C22 1, 7, 17 C32 3, 16

C3 1, 9 C13 2, 16 C23 2, 7, 17 C33 4, 15

C4 2, 9 C14 2, 7, 15 C24 3, 17 C34 4, 16

C5 1, 10, 13 C15 3, 11, 15 C25 4, 17 C35 5, 8, 16

C6 2, 10, 13 C16 1, 18 C26 5, 8, 17 C36 5,8,11,13

C7 1, 15 C17 1, 7, 16 C27 1,6, 8,17 C37 5, 8, 15

C8 1, 7, 11, 13 C18 2, 18 C28 2,6,8,17

C9 2, 15 C19 2, 7, 16 C29 1, 6, 12

70 The Open Transportation Journal, 2011, Volume 5 Defossez et al.

[14] Khansa W, Réseaux de Petri p-temporels : contribution à l’étude
des systèmes à événements discrets. thèse de doctorat, Université
de Savoie, France, 1997.

[15] B. Berthomieu and M. Diaz, “Modeling and verification of time
dependant systems using time petri nets”, IEEE Transactions on
Software Engineering, vol. 17, no. 3, pp. 259- 273, 1991.

[16] L. Jansen and E. Schnieder. “Traffic Control Systems Case Study:
Problem Description and a Note on Domain-Based Software
Specification”. Technical report, Technical University of
Braunschweig, 2000.

[17] J.-L. Boulanger and P. Bon, “BRAIL Requirement Analysis”. In E.
Schnieder and G. Tarnai, Eds, Formal Methods and Automation
and Safety in Railway and Automotive Systems, FORMS/FOR
MAT’2004, pages 221-229, Braunschweig, Germany, December,
pp. 221-229 2004

[18] P. Bon S. Collart-Dutilleul, F. Defossez, Safety requirements and
p-time Petri nets: a level crossing case study. In IMACS

Multiconference on Computational Engineering in Systems
Applications (CESA 2006), Pékin, Chine, October, pp. 1118-1123.
2006.

[19] W. Khansa, J. P. Denat, and S. Collart Dutilleul, “P-time Petri Nets
for Manufacturing Systems”. In IEE International Workshop On
Discrete Event Systems (WODES’96), pp. 94-102, Edinburgh,
Scotland, August 1996.

[20] F. Defossez, S. Collart Dutilleul, and P. Bon, Temporal
requirements checking in a safety analysis of railway systems. In E.
Schnieder, and G. Tarnai, Eds., Formal Methods and Automation
and Safety in Railway and Automotive Systems, FORMS/FOR
MAT, 2008, Braunschweig, Germany, October 2008, pp. 273-280.

[21] F. Defossez , P. Bon, and S. Collart Dutilleul, “Taking advantage
of some complementary modeling methods to meet critical system
requirement specifications”. Computer Railway, vol. XI, PP. 153-
162, 2008.

Received: May 25, 2010 Revised: August 23, 2010 Accepted: September 29, 2010

© Defossez et al.; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/
3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

