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Abstract: A supernetwork is usually defined as an augmented network that consists of a “basic network” for route choice 
and a “virtual network” for other travel choices. Supernetwork representations are useful pedagogical device to interpret 
various combined travel choice models as an extension of the fixed demand traffic assignment problem. Based on three 
proposed criteria, this paper reviews current supernetworks and modifies them as needed for better representation. A 
nested combined model consisting of four choices subject to variable demand is described with an example. Using 
supernetwork representations, combined travel choice models have great potential to become more popular than 
sequential four-step travel demand forecasting, even with feedback. In addition, recently developed quick-precision traffic 
assignment algorithms could be more efficient than traditional multistage solution algorithms for solving combined travel 
choice models. The proposed new supernetwork representations can be extended to other network problems in the supply 
chain network or other economics networks with minor modifications. 
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1. INTRODUCTION 

 Essential for transportation planning, travel demand 
forecasting contains four travel choices: trip origins or 
frequency of travel, origin-destination (abbreviated as O-D 
hereafter), mode, and route (traffic assignment). 
Traditionally, these four choices are performed as a top-
down procedure, shown in Fig. (1). 
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Fig. (1). Sequential travel forecasting in transportation planning. 

 Among the four travel choice decisions, fixed demand 
traffic assignment, also known as standard or basic traffic 
assignment, is recognized as the most fundamental module 
due to its direct and crucial impact on network congestion. In 
real applications, traffic assignment is often considered along 
with one or more other travel decisions. When they are 
considered within a unified framework, a combined travel 
choice model (hereafter called the combined model) is 
formed. 
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 Beckmann, McGuire, and Winsten [1] pioneered the 
original variable demand–route choice model. Sheffi [2] 
synthesized his contributions on combined models, as well 
as integrated the findings of other scholars. An extensive 
historical account and mathematically rigorous synthesis of 
combined models was prepared by Patriksson [3]. 
Oppenheim [4] made several theoretical advances to origin-
destination-mode choice models based on random utility 
theory. Syntheses and reviews of combined models were 
elaborately offered by Boyce, LeBlanc and Chon [5], Boyce 
[6, 7] and Boyce and Bar-Gera [8, 9]. Here we mainly focus 
on four travel choice dimensions, i.e., trip origins (TO), trip 
distribution (TD), mode choice (MC) and traffic assignment 
(TA) assuming travel demand is known and fixed. However, 
the variable demand may also be considered when needed. 
By all possible combinations, there are eight nested 
combined models: 
1. Two-step combined models: modal choice/traffic 

assignment (MC/TA), trip distribution/traffic 
assignment (TD/TA), and variable demand/traffic 
assignment (VD/TA); 

2. Three-step combined models: TD/MC/TA, TO/MC/ 
TA and TO/TD/TA; 

3. Four-step combined models: TO/TD/MC/TA with 
fixed demand, TO/TD/MC/TA with variable demand. 

 Combined models are extensions of the fixed demand 
traffic assignment problem but are more difficult to 
understand. However, if combined models can be interpreted 
as an augmented network, like the fixed demand traffic 
assignment model is interpreted by the basic network, this 
difficulty could be lessened. This augmented network is 
called a supernetwork. 
 A supernetwork requires the addition of a virtual network 
to the basic network created from a real physical network. 
The basic network with real nodes and links is used for route 
choice, while the virtual network with virtual nodes and links 
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reflects one or more other choice dimensions. Naturally, real 
links must be associated with measured/estimated link costs, 
and virtual links are characterized by hypothesized cost 
functions that can appropriately represent the associated 
travel choice dimensions. Using this type of supernetwork 
representation, combined models can be addressed as an 
extension of the fixed demand traffic assignment problem to 
which all fixed demand traffic assignment algorithms are 
applicable for solution. 
 Since the supernetwork representation is a useful 
pedagogical device and possibly a stimulus for introducing 
more efficient algorithms for combined models, the structure 
of currently available virtual networks should be examined 
and modified if necessary. To examine the appropriateness 
of supernetwork representations in the literature, we propose 
three criteria: 
1. The supernetwork can address the combined model as 

an extended fixed demand traffic assignment 
problem. By virtue of traffic assignment, the 
corresponding objective function is formed by 
summing the integral of all link cost functions used in 
the supernetwork. 

2. The supernetwork can be divided into a basic network 
and a virtual network. The real links in the basic 
network must be associated with measure/estimated 
real link cost, while the virtual links embedded in the 
virtual network must be able to characterize the 
intended travel choice dimensions. Both user-
equilibrium (UE) and non-UE conditions can be well 
represented by the supernetwork by assigning suitable 
hypothesized cost functions to the virtual links. Note 
that UE is defined by the Wardrop principles [10], 
while the non-UE conditions are usually characterized 
by a multinomial logit function (or logit function in 
short) [2, p. 364]. In a narrower sense, the term of 
non-UE is equivalent to “stochastic” UE. 

3. The virtual network embedded in a supernetwork 
requires the addition of as few virtual nodes and links 
as possible, considering computational efficiency. 

 Note that our purpose is pedagogy, mainly to explain the 
relationship of our supernetwork representation to the 
standard ones. Therefore graphs are used for ease of 
comparison. This paper is organized as follows. In Section 2, 
we review the supernetworks associated with two-step 

combined models. Section 3 extends the discussion to three-
step combined model. Section 4 elaborates four-step 
combined models. Section 5 formulates the combined 
TO/TD/MC/TA problem with variable demand as an 
extended traffic assignment problem and derives its 
optimality conditions. Section 6 further demonstrates with a 
numerical example the TO/TD/MC/TA problem with 
variable demand. Section 7 concludes the paper. 

2. SUPERNETWORKS FOR TWO-STEP COMBINED 
MODELS 

2.1. Combined VD/TA Model 

 The variable demand traffic assignment problem was first 
formulated as an optimization model by Beckmann, 
McGuire, and Winsten [1]. Gartner [11] introduced two 
supernetworks, called zero cost overflow formulation and 
excess-demand network representation, for converting the 
variable demand traffic assignment problem into an 
equivalent fixed demand traffic assignment. The two 
supernetworks for the variable demand traffic assignment 
problem are redrawn in Fig. (2a, b). 

 In the figures, symbols trr ' ,  tsr ' ,  qrs ,  ers ,  Drs
1 ( ),  Wrs e

rs( )  
denote, travel time for link rr’, travel time for link sr’, trip 
rate between O-D pair (r,s), excess demand between O-D 
pair (r,s), inverse demand function between O-D pair (r,s), 
and the augment-complementing function of the inverse 
demand, respectively. By virtue of traffic assignment, the 
objective function for the supernetwork in Fig. (2a) can be 
constructed as follows: 

z = z(basic network) + z(virtual network)

   = z(basic network) + trr ( )
0

 xrr

rr
d + tsr ( )

0

 xsr

rs
d

   = z(basic network) Drs
1 ( )

0

 qrs

rs
d

 (1) 

where xrr ' ,  xsr '  denote flows on link rr’ and link sr’, 
respectively. Interestingly, the resulting objective function in 
Equation 1 is identical to the objective function that 
corresponds to the supernetwork presented in Fig. (2b). 
However, due to the fewer nodes and links required for the 
virtual network, the supernetwork shown in Fig. (2b) is 
preferable to Fig. (2a) for practical use. 

 
Fig. (2). Gartner’s supernetwork representation. (a) Zero-cost overflow formulation; (b) Excess-demand supernetwork (Source: Gartner [11]; 
Sheffi [2], p. 147 and p. 150). 
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2.2. Combined TD/TA Model 

 The first trip distribution/traffic assignment model is due 
to Evans [12]. Sheffi [2] presents a supernetwork for this 
problem. It is reproduced in Fig. (3). 
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Fig. (3). Sheffi’s combined TD/TA network representation (Source: 
Sheffi [2], pp. 169-170). 

 By virtue of traffic assignment, the objective function for 
the supernetwork in Fig. (3) can be formulated as 

z = z(basic network) + z(virtual network)

   = z(basic network) + tsr ( )
0

xsr

sr
d

   = z(basic network) +
1

ln M s

0

qrs

rs
d

   = z(basic network) +
1

qrs ln qrs
rs

M sqrs
rs

 (2) 

where ,  M s  are the parameter of the logit model and 
attraction measure associated with destination s. Note that 
with the given cost function in the virtual network, this 
supernetwork is essentially a non-UE type assignment 
problem. However, if the virtual links are assumed with zero 
cost, then the UE-type assignment problem emerges. Since 
Sheffi’s supernetwork satisfies the three criteria, no better 
supernetwork representation exists. 

2.3. Combined MC/TA Model 

 Sheffi [2] also presents two supernetworks for the 
combined MC/TA problem. The first supernetwork, shown 
in Fig. (4a), corresponds to a UE-type assignment. 

 In Fig. (4a), each origin and destination is decomposed 
by modes and connected by virtual links. All virtual links 
r r’, r r̂ , s’  s, ŝ s have zero costs. By virtue of 
traffic assignment, the objective function for the 
supernetwork in Fig. (4a) can be formulated as follows: 

z = z(basic network) + z(virtual network)

   = z(basic network) + trr ( )
0

xrr

rr
d + trr̂ ( )

0

xrr

rr̂
d

                                  + ts s ( )
0

xs s

s s
d + tŝs ( )

0

xŝs

ŝs
d

   = z(basic network)

 (3a) 

 As shown in Equation 3a, the objective function 
corresponding to the supernetwork presented in Fig. (4a) can 
be simplified as the objective function for the basic network. 
In other words, the addition of four zero virtual links to the 
basic network is not required for this UE-type assignment. 
Therefore, we instead propose the original basic network in 
Fig. (4b) for use, which indeed does not require the addition 
of virtual links. 
 Sheffi’s [2] second supernetwork for the MC/TA 
problem, shown in Fig. (5a), is associated with the non-UE 
transit assignment model. 

 In Fig. (5a), the travel time over equivalent transit links, 
t̂rs  is given by the performance function shown below: 

t̂rs (q̂
rs ,x, x̂) =

1
ln

q̂rs

 q rs -q̂rs  
+ rs + û

rs (x, x̂)     r, s  (3b) 

where ûrs (x, x̂)  is the minimum travel time over the transit 
network and is defined as the function of automobile flows x 
and transit flows x̂ . The symbols  q rs , q̂rs , rs ,  denote, 
total O-D trip rate, transit O-D trip rate, automobile 
preference parameter, and logit model parameter associated 
with each O-D pair, respectively. In this paper the notations 
of travel time, t, and travel cost, c, are used interchangeably. 
Note that the assumed performance function in Equation 3b 
is an artificial function, and has no intuitive meaning from 
the viewpoint of real transit links (or something to this 
effect). 
 By virtue of traffic assignment, the objective function 
corresponding to the supernetwork shown in Fig. (5a) can be 
written as follows: 
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Fig. (4). Sheffi’s supernetwork representation for MC/TA problem (UE) ([Source: Sheffi [2], p. 234). 
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 As shown in Equation 3c, the real link cost for transit 
mode can be separated from the assumed performance 
function and then combined with the real link cost for 
automobile mode to form the objective function for the basic 
network; after separation, the remaining items correspond to 
the virtual network. Based on this discussion, the 
supernetwork representation in Fig. (5a) for the MC/TA 

problem can be modified as shown in Fig. (5b). The 
modified supernetwork shown in Fig. (5b) is easier to 
understand than Sheffi’s [2] supernetwork shown in Fig. 
(5a), as the basic network is purely represented by real link 
cost functions and virtual network is assumed with link cost 
functions to characterize modal choice with logit formula. 

3. SUPERNETWORK FOR THREE-STEP COMBINED 
MODEL 

 Theoretically, three three-step combined models are 
possible: TO/TD/TA, TO/MC/TA, and TD/MC/TA. 
However, Sheffi [2] includes only the supernetwork for the 
TD/MC/TA combined model, shown in Fig. (6a): 
 By virtue of traffic assignment, the objective function 
corresponding to the supernetwork shown in Fig. (6a) can be 
written as follows: 

 
Fig. (5). (a) Sheffi’s supernetwork Rrepresentation for MC/TA problem (Non-UE) (Source: Sheffi [2], p. 243); (b) Proposed combined 
MC/TA supernetwork representation. 
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Fig. (6). (a) Sheffi’s combined TD/MC/TA supernetwork representation (Source: Sheffi [2], p. 248); (b) Proposed combined TD/MC/TA 
supernetwork representation. 
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 The symbols  and M s  denote respectively the logit 
model associated with mode choice and attractiveness at 
destination s. From the result shown in Equation 4, it is clear 
that the objective function can be divided into two parts: a 
basic network and a virtual network. Note that the virtual 
network can be further divided into two subclasses, i.e., 
mode choice and trip distribution. To better represent this 
resulting objective function, a new supernetwork 
representation is proposed in Fig. (6b). Clearly, three steps 
of travel choices have been orderly represented in the new 
supernetwork. 
 With the aforementioned discussion and the new 
supernetworks proposed for the three-step combined models, 
the supernetworks for the four-step combined models can be 
easily constructed by analogy. 

4. SUPERNETWORK FOR FOUR-STEP COMBINED 
MODEL 

4.1. Supernetwork for Four-Step Combined Models with 
Fixed Demand 

 The four-step combined model with fixed demand, i.e., 
TO/TD/MC/TA, is one of the most complex cases among 
combined models. Sheffi’s [2] supernetwork covering four 
steps of travel choices is redrawn in Fig. (7a): 

 In fact the supernetwork shown in Fig. (7a) is not really 
the one for the TO/TD/MC/TA combined model because the 
TO dimension is not suitable represented; rather the variable 
demand dimension is included in the figure. By virtue of 
traffic assignment, the objective function corresponding to 
the supernetwork shown in Fig. (7a) can be written as 
follows: 
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 From the result shown in Equation 5a, it is clear that the 
objective function associated with the virtual network can be 
further divided into three subclasses, i.e., mode choice, trip 
distribution, and variable demand. Clearly, the supernetwork 
presented in Fig. (7a) is not the best to represent the four-
step combined models, due to lack of suitable network 
representation for mode choice as well as trip origin (or trip 
frequency). A better supernetwork representation for the 
four-step combined TO/TD/MC/TA model with fixed 
demand is proposed in Fig. (7b) which implies the following 
objective function. 
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 The symbol  denotes logit parameter associated with 
trip origin (or trip frequency). 

4.2. Supernetwork for Four-Step Combined Model with 

 
Fig. (7). (a) Sheffi’s supernetwork for TO/TD/MC/TA combined model (Source: Sheffi [2], p. 253). (b) Proposed supernetwork for 
combined TO/TD/MC/TA model with Fixed Demand. 
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Variable Demand 

 If variable demand is incorporated into the four-step 
combined model, the corresponding supernetwork 
representation can be drawn in Fig. (7c) by analogy: 
 The supernetwork representation proposed in Fig. (7c) 
implies the following objective function. 
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ln
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ln + rs0
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qrs ln qrs
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rrs
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 q
d

   = z(basic network) + z(virtual network)

 (5c) 

 Note that the flow over the excess link R R’ denotes the 
flow of “nontravelers” in the network being studied. 

5. MODEL FORMULATION AND OPTIMALITY 
CONDITIONS FOR THE COMBINED TO/TD/MC/TA 
PROBLEM WITH VARIABLE DEMAND 

 In the following sections, we show that the combined 
TO/TD/MC/TA problem with variable demand can be 
formulated as an extended traffic assignment model with the 
help of supernetwork representation and derive its optimality 
conditions, which must be consistent with the generalized 
Wardrop principle. 

5.1. Formulating the Combined TO/TD/MC/TA Problem 
with Variable Demand by Supernetwork Representation 

 As the four-step combined TO/TD/MC/TA problem with 
variable demand is an extension of the traffic assignment 
problem, it must consist of an objective function and a 
feasible region that includes three types of constraints (i.e., 
flow conservation, non-negative and definitional 
constraints). With the help of supernetwork representation, 
the mathematical model corresponding to the four-step 
combined TO/TD/MC/TA problem with variable demand 
can be formulated as follows: 
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where the feasible region  is defined by the following 
constraints. 
 Flow Conservation Constraints: 

fmp
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p
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 Non-negativity Constraints: 
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 Definitional Constraints: 

xmlm
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     l   (6h) 
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m
= cml mlp
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l
     r, s, p

m
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where 

qmax  is the upper limit of total OD trip rate from the entire 
area; 

q  is the total OD trip rate from the entire area; 

qr  is the total OD trip rate from origin r; 

qrs  is the total OD trip rate between origin r and destination 
s; 

qm
s  is the total flow by mode m arriving destination s; 

qm
rs  is the total flow by mode m between origin r and 

destination s; 

e  is the excess flow associated with the entire area; 

 
Fig. (7c). Proposed supernetwork for combined TO/TD/MC/TA model with variable demand. 
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D 1 q( )  is the inverse demand function; equivalent to the 
excess demand function E(e) ; and 

cml  is the travel cost function associated with link l and 
mode m. 
 Equation 6a defines the objective function by summing 
the integrals of link travel costs for all links, including real 
links for traffic assignment and virtual links for modal 
choice, trip distribution, trip origin as well as variable 
demand. Equation 6b conserves flows for each O-D pair by 
mode m. Eq. 6c conserves flows for each O-D pair. Equation 
6d conserves flows for each origin r. Equation 6e conserves 
flows for the entire area. Equation 6f sets the upper limit of 
total traffic demand for the entire area. Equation 6g requires 
path flow associated with each mode and route be negative. 
Equations 6h and 6i are definitional constraints. 
 The link travel costs of the virtual links are assumed 
based mainly on the logit formula, as follows: 
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=
1
ln qm

rs Mm
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csr ' =
1
ln qrs M s  (7b) 

cr 'R =
1
ln qr  (7c) 

cRR = D 1 q( )  (7d) 

where 

 , ,  are the logit function dispersion parameters 
associated with modal choice, trip distribution and trip 
generation, respectively; 
M 

s is the attractiveness measure associated with destination 
s; and 

Mm
s is the preference parameter associated with destination s 

and mode m. 
 Then, the above mathematical model can be rewritten as 
follows: 
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 To show that this model can result in the intended 
travelers’ behavior, we derive its optimality conditions in the 
following section. 
 

5.2. Optimality Conditions 

 Let dual variables associated with Equations 6b through 
6f be μm

rs , rsμ , μ r , μ  and 
max

μ , respectively. The 
corresponding Lagrangian function associated with the 
objective function in Equation 8a can be expressed as 
follows: 
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 The corresponding optimality conditions can be obtained 
by taking derivatives with respect to all primal and dual 
decision variables. Since the optimality conditions 
corresponding to the dual decision variables yield the 
original constraints, we only need to discuss the optimality 
conditions with respect to the primal decision variables, as 
follows: 

(1) The necessary conditions associated with decision 
variables q  (denoting variable demand) are: 

 

L

q
0  (9a) 

q
L

q
= 0  (9b) 

 Since 
L

q
= μ μmax D 1 q( ) , substituting it into 

Equations 9a and 9b yields 

L

q
= μ μmax D 1 q( ) 0  (9c) 

 

q
L

q
= q μ μmax D 1 q( )( ) = 0  (9d) 

 Conditions 9c and 9d have similar interpretations. If 
the total origins are positive, i.e., q > 0 , then, 

μmax = 0  and for Equation 9d to hold, Equation 9c 
must hold as an equality. In other words, 

μ = D 1 q( )  (9e) 

 Both sides of this equation can be inverted to obtain 

D μ( ) = q  (9f) 

 Thus, if q > 0 , it must be given by the demand 
function. If, however, q = 0 , then from Equation 9c 
we find that 

μ μmax D 1 q( )  (9g) 

 meaning that the travel time may be too high to 
induce any travelers in the study area. 

(2) The necessary conditions associated with decision 
variables qr  (denoting trip origins) are: 

 

L

qr
0  (10a) 

 

qr
L

qr
= 0  (10b) 
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 Since 
!L
!qr

= 1
 
ln qr + μ r # μ , substituting it into 

Equations 10a and 10b yields 

 

! L
!qr

= 1
 
ln qr + μ r # μ  0  (10c) 

 
qr

! L
!qr

= qr 1

 
ln qr + μ r # μ 

%&
 
()
= 0  (10d) 

 Conditions 10c and 10d have similar interpretations. 
If the trip origins are positive, i.e., qr > 0 , then, for 
Equation 10d to hold, Equation 10c must hold as an 
equality. In other words, 

1
ln qr + μ r μ = 0  (10e) 

 Both sides of this equation can be inverted to obtain 

ln qr = μ r μ( )  (10f) 

 This can be rewritten as 

qr = e
ur μ( )  (10g) 

 Summing over r, we have 

q =   e (ur μ )

r
 (10h) 

 Dividing Equation 10e by Equation 10f results in a 
logit function: 

qr

q
=

e
ur μ( )

  e (ur μ )

r

=
e ur

  e ur

r

 (10i) 

(3) The necessary conditions associated with decision 
variables rs

q  (denoting total O-D demand) are: 

0
rs
q

L
 (11a) 

 

qrs
L

qrs
= 0  (11b) 

 By derivation, 
 

L

qrs
=
1
lnqrs M s + urs μ r . Since 

ln qrs  is not defined for qrs = 0 , the inequality 

qrs > 0  must hold. By Equation 11b, 
 

L

qrs
= 0 , i.e., 

L

qrs
=
1
lnqrs M s + μ rs μ r = 0  (11c) 

 By manipulation, this results in 

ln qrs = urs M s μ r( )  (11d) 

 This can be rewritten as 

qrs = e
μrs M s μr( )  (11e) 

 Summing over s’, we have 

qr =   e (μrs ' M s ' μ r )

s '
 (11f) 

 Dividing Equation 11e by Equation 11f results in a 
logit function: 

qrs

q r =
e

μrs M s μ r( )

  e (μrs ' M s μ r )

s

=
e

μrs M s( )

  e (μrs ' M s )

s

 (11g) 

(4) The necessary conditions associated with decision 
variables qm

rs  (denoting O-D demand by mode) are: 
L

qm
rs 0  (12a) 

 

qm
rs L

qm
rs = 0  (12b) 

 By derivation, 
L

qm
rs =

1
ln qm

rs Mm
s
+ μm

rs μ rs . Since 

ln qm
rs  is not defined when qm

rs
= 0 , qm

rs
> 0  must 

hold. Equation 12b yields 
 

L

qm
rs = 0 , i.e., 

L

qm
rs =

1
ln qm

rs Mm
s
+ um

rs μ rs
= 0  (12c) 

 With manipulation, this results in 

ln qm
rs
= um

rs Mm
s μ( )  (12d) 

 which can be rewritten as 

qm
rs
= e

um
rs Mm

s μrs( )  (12e) 

 Summing over m’, we have 

qm '
rs
=   e

um '
rs Mm '

s μrs( )
m 'm '

 (12f) 

 Dividing Equation 12e by Equation 12f results in a 
logit formula: 

qm
rs

  qm '
rs

m '

=
e

μm
rs Mm

s μrs( )

  e
μm '
rs Mm '

s μrs( )
m '

=
e

μm
rs Mm

s( )

  e
μm '
rs Mm '

s( )
m '

 (12g) 

(5) The necessary conditions associated with decision 
variables fmp

rs  (denoting path flow by mode between 
each O-D pair) are: 

 

L

fmp
rs 0  (13a) 

 

fmp
rs L

fmp
rs = 0  (13b) 

 Since 

 

L

fmp
rs =

cml ( )d
0

xml

lm
μm
rs fmp

rs

pmrs

fmp
rs = cml mlp

rs

l m
rs
= cmp

rs μm
rs  

 Therefore, the associated necessary conditions 
become 
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fmp
rs L

fmp
rs = fmp

rs cmp
rs μm

rs( ) = 0  (13c) 

cmp
rs μm

rs 0   (13d) 

 Conditions (13c) and (13d) hold for each path and mode 
between any O-D pair in the supernetwork. If the flow on 
path p connecting origin r and destination s by mode m is 
positive ( fmp

rs
> 0 ), then the corresponding path travel time is 

equal and minimum, i.e., cmp
rs

= μm
rs . Otherwise, the 

corresponding path travel time is larger than or equal to the 
minimum path travel time. 
 From the above discussion, it is evident that optimality 
conditions are consistent with traveler behavior assumed for 
the four different travel choices, or more specifically, for 
generalized UE conditions. 

6. NUMERICAL EXAMPLE FOR THE COMBINED 
TO/TD/MC/TA MODEL WITH VARIABLE DEMAND 

 With the help of the above supernetwork representation, 
the combined TO/TD/MC/TA model with variable demand 
can be regarded as an extended traffic assignment problem, 
for which any prevailing traffic assignment algorithm is 
applicable. There are several of such algorithms available in 
the literature, including the traditional Frank-Wolfe 
algorithm [13] and efficient quick-precision methods [14-
17]. The Frank-Wolfe algorithm is not efficient and may 
become obsolete for solving large-scale traffic assignment 
problems; however, it is simple and more suitable for 
pedagogical purposes. 

6.1. Frank-Wolfe Method 

 Without knowing the concept of supernetworks, the 
Frank-Wolfe method has been used to solve various two- or 
three-step combined models such as the trip distribution, 
mode choice, and assignment [18] and the doubly-
constrained, negative exponential gravity model with flow-
dependent travel times [19]. The Frank-Wolfe method is 
likely superior to a generalized Benders decomposition 
based algorithm [20], which is highly inefficient algorithm 
for solving a combined model of trip distribution and 
assignment, but has proven inferior to the partial 
linearization algorithm of Evans [12] for solving the doubly 
constrained combined model [19] as well as combined mode 
and route choice models [21, 22]. The interested reader may 
refer to Boyce [23] for details. 

 To apply the Frank-Wolfe algorithm to the combined 
TO/TD/MC/TA model with variable demand in Equation 8a, 
its linearized subproblem must be solved for the search 
direction. To derive the linear approximation of the objective 
function in Equation 8a, Taylor’s series is commonly applied 
for a given solution fmp

rs{ }  to the first order as follows: 

z [ ]
z [ ]
fmp
rs fmp

rs fmp
rs( )  (14a) 

where 

z [ ]
fmp
rs =

z [ ]
xml

xml
fmp
rs +

z [ ]
qm
rs

qm
rs

fmp
rs +

z [ ]
qrs

qrs

qm
rs

qm
rs

fmp
rs +

z [ ]
qr

qr

qrs
qrs

qm
rs

qm
rs

fmp
rs

=

cml mlp
rs

+
1
ln qm

rs Mm
s

mrslm

+
1
ln qrs M s

+
1
ln qr

r
D 1 q( )

rs

=

cmp
rs

pm
+

1
ln qm

rs Mm
s

mrsrs

+
1
ln qrs M s

rs
+

1
ln qr

r
D 1 q( )

 (14b) 

 The linearized subproblem of the original problem in 
Equation 8a can now be expressed as 

min
(g, ) L

zn =
z [ ]
fmp
rs gmp

rs

= cmp
rs
+
1
ln qm

rs Mm
s

+
1
ln qrs M s

+
1
ln qr D 1 q( )

pmrs
gmp
rs

 (14c) 

where gmp
rs  denotes flows on path p by mode m between O-D 

pair rs, L is the feasible region associated with the linear 
subproblem, which is defined by the following constraints. 
 St. 

gmp
rs

= m
rs

p
     r, s,m  (14d) 

m
rs
=

rs

m
     r, s  (14e) 

! rs = ! r

s      # r  (14f) 

! r = !
r  (14g) 

! + e = ! max  (14h) 

gmp
rs ! 0       r, s,m, p   (14i) 

yml = gmp
rs ! map

rs

p s r      # m, l   (14j) 

cmp
rs = cml! mlp

rs    r, s,m, p
l#  (14k) 

 The meanings of Equations 14d through 14k are identical 
to those of Equations 6b through 6i, except the main problem 
variables x, f, and q are replaced by the linear subproblem 
variables y, g, and v. Note that the linear subproblem in 
Equation 14c can be decomposed by origin, which not only 
reduces the size of the subproblem but also simplifies it as a 
series of one-to-all shortest path problems. Based on the 
derived linear subproblem, the four-step combined 
TO/TD/MC/TA model subject to variable demand can be 
easily solved by the Frank-Wolfe algorithm without any 
difficulty (see [13] for algorithmic steps). 
 

6.2. Numerical Example 

 To demonstrate, we take a 21-link (indexed from 1 to 21) 
12-node supernetwork for testing, as shown in Fig. (8). 
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 The relevant data are given in Table 1: 
Table 1. Input Data 
 

Link Cost Function Link Cost Function Demand 

c1 = 0  c2 = 0  

c3 = 0.4 + 0.2x3  c7 = 0.5 + 0.4x9  

c4 = 8  c8 = 8.5  

c5 = 0.5 + 0.4x5  c9 = 0.4 + 0.2x7  

c6 = 8.5  c10 = 8  

c11 = ln x11  c13 = ln x13  

c12 = ln x12  c14 = ln x14  

c15 = ln x15  c17 = ln x17  

c16 = ln x16  c18 = ln x18  

c19 = ln x19  c20 = ln x20  

c21 = Dr
1 ( ) = E ( ) = 5 + 2x21  

qmax = 100  

 
 Based on the derived linear subproblem, the four-step 
combined model with variable demand can be solved by the 
Frank-Wolfe algorithm without any difficulty. The obtained 
results for link flows, link costs as well as dual variables are 
listed in Table 2: 
 It is observed that the obtained solution completely 
complies with the aforementioned optimality conditions, as 
follows: 
1. Trip origins 

qr1 = q
e (c1+c3+c11+c15 )

e (c1+c3+c11+c15 )
+ e (c2+c10+c14+c18 ) = 192.599

e 15.23508

e 15.23508
+ e 15.23508

      = x15 + x17 = 96.29936

 (15a) 

The computed results for trip origins satisfy the 
assumed logit formula. 

2. Trip distribution 

qr1s1 = qr1
e (c1+c3+c11 )

e (c1+c3+c11 )
+ e (c2+c10+c14 ) = 96.29936

e 11.36077

e 11.36077
+ e 11.36077

      = x3 + x4 = 48.14968

 (15b) 

The computed results for trip distribution satisfy the 
assumed logit formula. 

3. Mode choice: 

qauto
r1 s1 = qr1 s1

e (c1+c3 )

e (c1+c3 )
+ e (c1+c4 ) = 48.14968

e 7.148814

e 7.148814
+ e 8

        = x3 = 33.74407

 (15c) 

qtransit
r1 s1 = qr1 s1

e (c1+c4 )

e (c1+c3 )
+ e (c1+c4 ) = 48.14968

e 8

e 7.148814
+ e 8

        = x4 = 14.40561

(15d) 

The computed results for mode split are consistent 
with the logit formula. 

4. Traffic assignment 
At equilibrium, according to Wardrop’s first 
principle, the travel cost on all the used paths must be 
equal and minimum. The computed path travel times 
for all the used paths are exactly the same (19.80254 
units) which imply a generalized Wardrop 
equilibrium. 
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Fig. (8). Test network (supernetwork for TO/TD/MC/TA with variable demand). 
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5. Variable demand 

 Since c21 = 5 + 2x21 = 5 + 2 7.401271 = 19.80254 , this 
implies that the inverse demand is equal to the minimum 
travel time from all origins, i.e., D 1 q( ) = μ . 

 Overall, the optimality conditions are fully satisfied with 
this extended traffic assignment problem. 

CONCLUSION 

 A supernetwork representation is defined as an 
augmented network that consists of a basic network for route 
choice and a virtual network for other travel choices, such as 
trip origins, trip distribution, or modal choice. The 
supernetwork representation is advantageous for addressing 
various combined models as an extension of the fixed 
demand traffic assignment problem, which can serve as a 
good pedagogical device and lead to new research directions. 
A series of supernetworks has been elaborately reviewed and 
criticized. In particular, mode choice dimension as well as 
the four-step combined model has been extensively 
discussed. The revised versions of the supernetworks that 
have been developed are useful for pedagogical purposes. 
Based on our discussion, two important issues arise: 
1. Is the four-step sequential travel demand forecasting 

procedure still needed? 
2. Are more efficient algorithms possible for the 

combined models? 
 For the first issue, four-step traffic demand forecasting 
has long been used in transportation planning. However, 
inconsistencies due to module interfaces often occur between 
the steps of travel choices. Efforts to reduce these 
inconsistencies have been attempted in the past [24-28]; 
however, problems remain, although less significant. On the 

other hand, centered on route choice, various combined 
models have appeared in the literature that is believed to be 
more precise than traditional four-step sequential traffic 
demand forecasting procedure, even with feedback. The 
drawback associated with combined models is that the 
modeling concept is difficult to interpret, at least as 
compared to the traffic assignment model. However, with the 
help of supernetwork representation, all combined models 
can be regarded as an extended traffic assignment problem. 
Thus, the four-step sequential travel demand forecasting 
procedure, even with feedback, may eventually become 
obsolete. 
 Regarding to the second issue, most combined models 
have traditionally been solved by multistage solution 
algorithms. Examples can be seen in the variable demand 
traffic assignment using the Evans algorithm [12] and the 
trip distribution and traffic assignment model using the 
double-stage algorithm [2, 29]. However, as previously 
discussed, the combined models can be regarded as an 
extension of traffic assignment and solved accordingly using 
any traffic assignment solution algorithm. In fact, the traffic 
assignment solution algorithm has made amazing progress in 
the last decade. Efficient algorithms such as B [30], OBA 
[31], TAPAS [32-35], LUCE [36] as well as the projected 
gradient [17] could be more efficient than traditional 
multistage solution algorithms. Future research will further 
address this issue. 
 Note also that some researchers argue that transportation 
planning field has passed the point at which each individual 
researchers can code their own versions of published 
algorithms. In this case, the recent popularity of cloud 
computing comes into play. Cloud computing is Internet-
based computing, whereby shared resources, software and 
information are provided to computers and other devices on-

Table 2. Computational Results 
 

Link Cost Function Link Cost Function Equilibrium Condition 

c1 = 0  c2 = 0  x1 = x3 + x4 + x5 + x6 = 96.29936  

c3 = 0.4 + 0.2x3 = 7.148814  c7 = 0.5 + 0.4x7 = 13.99763  x2 = x7 + x8 + x9 + x10 = 96.29936  

c4 = 8  c8 = 8.5  x11 = x3 + x7 = 67.48814  

c5 = 0.5 + 0.4x5 = 13.99763  c9 = 0.4 + 0.2x7 = 7.148814  x12 = x4 + x8 = 28.81123  

c6 = 8.5  c10 = 8  x13 = x5 + x9 = 67.48814  

c11 = ln x11 = 4.211952  c13 = ln x13 = 4.211952  x14 = x6 + x10 = 28.81123  

c12 = ln x12 = 3.360766  c14 = ln x14 = 3.366766  x15 + x16 = x11 + x12 = 48.14968 *2  

c15 = ln x15 = 3.874315  c17 = ln x17 = 3.874315  x17 + x18 = x13 + x14 = 48.14968 *2  

c16 = ln x16 = 3.874315  c18 = ln x18 = 3.874315  x19 = x15 + x17 = 96.29936  

c19 = ln x19 = 4.567462  c20 = ln x20 = 4.567462  x20 = x16 + x18 = 96.29936  

c21 = Dr
1 ( ) = E ( ) = 5 + 2x21 = 19.80254  x21 = qmax x19 x20 = 7.401271  

μm
rs
= 7.148814;  13.99763; 8; 8.5 , μ rs

= 11.36077 , μ r
= 15.23508 , μ = 19.80254  and μmax = 0  
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demand, like a public utility. It is a paradigm shift following 
the mainframe and client-server shifts that preceded it. 
Details are abstracted from the users who no longer have 
need of, expertise in, or control over the technology 
infrastructure “in the cloud” that supports them [37]. Cloud 
computing describes a new supplement, consumption and 
delivery model for IT services based on the Internet, and it 
typically involves the provision of dynamically scalable and 
often virtualized resources as a service over the Internet [38]. 
It is a byproduct and consequence of the ease-of-access to 
remote computing sites provided by the Internet. 
 As a final remark, we believe that supernetwork 
representation can also be applied to other network 
applications such as economics networks [39] and supply 
chain network problems [40] with minor modifications. In 
addition, when the most complex combined TO/TD/MC/TA 
problem with variable demand is formulated as an extended 
traffic assignment model, the relationship between the 
sectors of urban planning and transportation is closer, and 
their interactions can be more precisely studied. One 
possible research topic in this direction is to estimate trip 
origins directly from traffic counts, which is analogous to the 
O-D estimation from the traffic assignment model. This new 
type of problem likely requires a bilevel model formulation 
and a sensitivity analysis solution technique [41], which is 
worth further exploration. 
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