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Abstract: The paper presents the development of an intelligent railway safety risk assessment based support system. The 

proposed method can evaluate qualitative and quantitative safety risk data and information in a uniform manner for 

railway safety risk assessment. It permits the safety risk analysts to assess the risks associated with the failure modes 

directly using linguistic terms, i.e. qualitative descriptors. The proposed intelligent railway safety risk assessment system 

is capable of assessing the risks at component level, sub-system level and system level. It can assess not only “hard” risks 

(e.g. risks of a system), but also “soft” risks (e.g. staff risks). The outcomes of safety risk assessment are represented in 

two formats, risk score and risk category with a belief of percentage, which provide very useful safety risk information to 

railway designers, operators, engineers and maintainers for risk response decision making. An illustrative example of staff 

risk assessment in a railway depot is used to demonstrate the proposed intelligent railway safety risk assessment system. 

The results indicate that by using the proposed system, risks associated with a railway depot can be assessed effectively 

and efficiently. 

Keywords: Railway safety, safety risk assessment, fuzzy reasoning approach, qualitative descriptors, staff safety risk 
assessment. 

1. INTRODUCTION 

 Railways are by far one of the safest means of ground 
transportation, especially for their passengers and 
employees. However, there are serious issues involved in 
both maintaining this position in reality and sustaining the 
public perception of railway safety excellence [1-3]. The UK 
railway now finds itself in a situation where actual and 
perceived safeties are real issues, to be dealt with in a new 
public culture of rapid change, short-term pressures, and 
instant communications [4, 5]. 

 The risk, in the railway industry, can be defined in 
relation to accidents and incidents leading to fatalities or 
injuries of passengers and employees. Recent structured 
hazard identification work within the industry has confirmed 
the high-risk scenarios of the types of accidents, such as 
collision, derailment and fire [4, 6, 7]. This shows the 
dangerous nature of the railway industry and demonstrates 
the need for increased awareness and better safety 
management. There are many possible causes of risk through 
operation and maintenance of vehicles and rail infrastructure 
and also from outside the railway such as vandalism and 
road incidents. Specifically, in the modification and 
maintenance of plain line, the largest number of serious 
incidences are from derailments and vehicles fouling 
infrastructure such as station platforms. There are many 
combinations of potential causes, each involving several 
disciplines and work-groups. 
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 Railway safety is a very complicated subject, which is 
determined by numerous aspects including human error. 
Many of the railway safety assessment techniques currently 
used are comparatively mature tools [2, 4, 6, 8-10]. 
However, in many circumstances, the application of these 
tools may not give satisfactory results because the safety risk 
data are incomplete or there is a high level of uncertainty 
involved in the safety risk data. Therefore, it is essential to 
develop new safety risk analysis methods to identify major 
hazards and to assess the associated risks in an acceptable 
way under various environments where such mature tools 
cannot be effectively or efficiently applied. The safety 
information produced should be in a form to aid decision-
making purpose. If risks are high, risk reduction measures 
must be applied and the operation and maintenance standards 
should be reassessed to reduce the occurrence probabilities 
and/or to control the possible consequences. If risks are 
negligible, no actions are required but the information 
produced needs to be recorded for audit purpose. 

 The quantified risk assessment (QRA) approaches such 
as fault tree analysis (FTA), event tree analysis (ETA) and 
equivalent annual fatality analysis (EAF) are currently used 
in railway safety risk analysis [4, 6, 10], but often do not 
effectively handle with uncertainty of information as they 
rely heavily on the supporting statistical information that 
may not be available. Collecting sufficient data on which to 
base a statistical probability of the failure is a costly and 
difficult undertaking, and the relevance of data to any 
particular system, as well as its validity, is often questionable 
[1, 11]. Furthermore, in many situations, the data of 
probability of failure of a system do not exist and it must be 
estimated based on the expert knowledge and experience or 
engineering judgement from similar items. In this context, a 
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safety risk model using fuzzy reasoning-based approach may 
be more appropriate to analyse the risks of the system where 
there is incomplete safety risk information [3, 12, 13]. A 
fuzzy reasoning approach allows imprecision or approximate 
information in its analysis process, which helps to restore 
integrity to safety risk analysis. The fuzzy reasoning 
approach can handle imprecision, ambiguous, qualitative 
information and quantitative data in a uniform manner. It 
allows the safety risk analyst to evaluate the risk associated 
with the failure modes directly using qualitative descriptors 
that are more expressive and natural to describe the risk 
issues in railway safety risk assessment [14-16]. 

 The paper presents an intelligent railway safety risk 
assessment system using a fuzzy reasoning approach. This 
system provides a structured way of combining the 
qualitative information with quantitative information from 
all available sources to facilitate safety risk analysis. The rest 
of the paper is organised as follows. In section 2, the 
fundamentals of fuzzy reasoning approach are described. 
The basic concepts of fuzzy set, membership function (MF), 
fuzzy operation, fuzzy IF-THEN rule and fuzzy inference 
system are outlined. Section 3 presents a methodology for 
the railway safety risk assessment using a fuzzy reasoning 
approach. The risk factors, such as failure probability (FP), 
consequent severity (CS), and risk level (RL) are discussed 
in terms of qualitative descriptors and how these qualitative 
descriptors are characterised within the MFs. The 
relationship between the risk factors and the RLs is 
addressed by the fuzzy IF-THEN rules base, which is based 
on engineering judgement and expert knowledge. Section 0 
describes the implementation of the proposed intelligent 
railway safety risk assessment system. The structure of 
software is illustrated in block diagram and the function of 
each module is also presented in this section. In addition, the 
methodology of processing uncertainty in risk analysis is 
also discussed, which two pseudo codes are given to help the 
implementation of such processes. The proposed system not 
only assesses the RL of a single failure event of a railway 
component, but can also assess the risks at subsystem and 
system levels based on a set of failure events. An illustrative 
example of the staff safety risk assessment of a railway depot 
is presented in section 5 to demonstrate the effectiveness of 
the proposed intelligent system in railway safety risk 
analysis. The results of the safety risk assessment in the case 
example are represented as risk scores, located in a defined 
range, and risk category with a belief of percentage. Finally, 
section 6 gives conclusions and a summary of main benefits 
of using fuzzy reasoning approach in the railway safety risk 
assessment process. 

2. FUZZY REASONING APPROACH 

 Fuzzy reasoning approach possesses the ability to mimic 
the human mind to effectively employ modes of reasoning 
that are approximate rather than exact. It enables the safety 
risk analyst to specify mapping rules in terms of qualitative 
expression rather than numbers and approximate function 
rather than exact reasoning. 

2.1. Fuzzy Sets and Membership Functions 

 Fuzzy set was originally introduced by Zadeh [17]. A 
fuzzy set A on a universe of discourse U is defined as a set of 
ordered pairs [14, 17-19]. 

{( , ( )) | }
A

A x x x Uμ=
 

(1) 

where A(x)
 
is called the MF of x in A that takes values in the 

interval [0, 1]. The element x is characterised by qualitative 
descriptors, for example, in railway safety risk assessment, 
one may often use such qualitative descriptors to present the 
FP as Improbable, Remote, Unlikely, Possible, Likely and 
Frequent; one may often use such qualitative descriptors to 
describe the CS as Minor, Major, Severe and Fatal; and 
qualitative descriptors such as Low, Possible, Substantial 
and High are used to describe the RL. Various types of MFs 
can be used, including triangular, trapezoidal, generalized 
bell shaped, and Gaussian functions [8]. However, the 
triangular and trapezoidal MFs are the most frequently used 
in safety risk analysis practice [1-3, 11-13]. 

 Let U be the universe of discourse U = [0,u] . A 

triangular MF can be defined as A = {a,b, c}  

f (x;a,b, c) =

0, x a

x a
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c x

c b
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where three parameters {a,b, c} with satisfaction of the 

relationship a b c  determine the x coordinates of three 

corners of a triangular MF. 

 Let U be the universe of discourse U = [0,u] . A 

trapezoidal MF can be defined as A = {a,b, c,d}  

f (x;a,b, c,d) =

0, x a

x a

b a
, a x b

1 b x c

d x

d c
, c x d

0, d x
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 Similarly, where four parameters {a,b,c,d} with 

satisfaction of the relationship a b c d  determine the 

x  coordinates of the four corners of a trapezoidal MF. The 

triangular and trapezoidal MFs are shown in Fig. (1). 

 A MF indicates the degree of preference. It should be 

noted that a numerical value, a range of numerical values and 

a triangular MF can be converted as simplified trapezoidal 

MFs, for example, when a = b = c = d , a MF is a numerical 

value; when a = b  and c = d , a MF is a range of numerical 

values; when b = c , a trapezoidal MF becomes a triangular 

MF. 

2.2. Fuzzy Operations 

 The union (“or”) and intersection (“and”) are two fuzzy 

operations, which are widely used in the safety risk 

assessment. The union of A  and B , denoted by A B or A 

OR B, contains all elements in either A or B, which is 
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calculated by the maximum operation and its MF is defined 

as: 

μA B (x) = max{μA (x),μB (x)}  (4) 

 The intersection of A  and B , denoted by A B  or A 

AND B, contains all the elements that are simultaneously in 

A and B, which is obtained by the minimum operation and its 

MF is defined as 

μA B (x) = min{μA (x),μB (x)}  (5) 

2.3. Fuzzy IF-THEN Rule 

 Fuzzy reasoning approaches are rule-based 
methodologies constructed from human knowledge in the 
form of fuzzy IF-THEN rules [3, 14, 18, 19]. A fuzzy IF-
THEN rule is a statement in which some words are 
characterised by continuous MF. For example, the following 
is a frequently used fuzzy IF-THEN rule in railway safety 
risk assessment. 

 IF FP is likely and CS is fatal, THEN RL of the failure 
event is high. 

where likely, fatal and high are qualitative descriptors 
characterised by MFs. 

 A fuzzy rule base consists of a set of fuzzy IF-THEN 

rules. Consider the input space 
 
U =U1 U2 Un Rn

 

and the output space V R . Only the multi-input-single-

output case is considered here, as a multi-output system can 

always be decomposed into a collection of single-output 

systems. Specifically, the fuzzy rule base comprises the 

follow fuzzy IF-THEN rules 

Ri :  IF x1  is A1
i
 and … and x j  is Aj

i
 and … and xn  is An

i
, 

THEN y is Bi
 

i = 1, 2, ..., r ; j = 1, 2, ...,n  (6) 

where An
i
and Bi

are the fuzzy sets in U R and V R , 

respectively, and 
 
x = (x1, x2 ,…, xx )

T U  and y V  are the 

input and output qualitative descriptors of the fuzzy 

reasoning system, respectively. Owing to their concise form, 

fuzzy IF-THEN rules are often employed to capture the 

imprecise modes of reasoning that play an essential role in 

the human ability to make decisions in an environment of 

uncertainty and imprecision. Therefore, in the proposed 

fuzzy reasoning system, human knowledge has to be 

represented in the form of the fuzzy IF-THEN rules (Eq. 

(6)). There are three major properties of fuzzy rules that are 

outlined as follows [2, 20]. 

1. A set of fuzzy IF-THEN rules is complete if for any 

x U , there exists at least one rule in the fuzzy rule 

base, say rule Ri  in the form of Eq. (4), thus 

 μ
Aj
i (x j ) 0            (7) 

for all 
 
j = 1, 2,…,n . Intuitively, the completeness of 

a set of rules means that at any point in the input 

space, there is at least one rule that ‘fires’, i.e. the 

membership value of the IF part of the rule at this 

point is non-zero. 

2. A set of fuzzy IF-THEN rules is consistent if there are 
no rules with the same IF parts, but different THEN 
parts. 

3. A set of fuzzy IF-THEN rules is continuous if there 
do not exist such neighbouring rules whose THEN 
part fuzzy sets have empty intersection, i.e. they do 
not intersect. 

2.4. Fuzzy Inference System 

 The railway safety risk assessment system consists of 
two subsystems: fuzzy inference system (FIS) and user 
interface system. Fuzzy inference is to map from a given 
input to an output using fuzzy logic. The mapping provides a 
basis from which decisions can be made on the basis of both 
of qualitative and quantitative information. The process of 
fuzzy inference involves the developments of qualitative 
descriptors, MFs, fuzzy logic operations and fuzzy rule base 
[21-23]. The FIS as shown in Fig. (2) consists of four 
components: the fuzzy rule bases, fuzzification, fuzzy 
inference engine and defuzzification. 

2.4.1. Fuzzy Rule Base 

 The development of the rule base involves various 
knowledge acquisition techniques to produce a body of 
information that could be useful in developing fuzzy 
qualitative descriptors and their associated MFs to qualify 
RLs. For many practical situations, several approaches can 
be used to gather information and knowledge required in 
deriving fuzzy rules. The knowledge acquisition 
methodologies used in this study include (a) historical data 

 

Fig. (1). Illustration of triangular and trapezoidal MFs. 
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analysis, (b) failure analysis, (c) concept mapping, and (d) 
domain human expert experience and engineering 
knowledge analysis. These techniques are not mutually 
exclusive, and a combination of them is often the most 
effective way to determine the rule base [3, 11, 13]. 

2.4.2. Fuzzification 

 The fuzzification converts input values into the 
corresponding fuzzy MF values. It determines the degrees of 
input values belonging to each of the appropriate fuzzy sets 
by MFs. 

2.4.3. Fuzzy Inference Engine 

• Evaluation of Fuzzy Rule. Once inputs have been 
fuzzified, these fuzzified values are employed to each 
rule to find out whether the rule will be fired. If a rule 
has true value in its premise, it will be fired and then 
contributes to the conclusion part. If the premise of a 
given rule has more than one part, the fuzzy operator 
is applied to evaluate the composite firing strength of 
the rule. Considering the i-th rule has two parts in the 
premise 

 Ri :  IF x1  is A1
i
 and x2  is A2

i
, THEN y is Bi

 

 i = 1, 2, ..., r            (8) 

 The two parts in the premise are connected with 

“and” and the firing strength i  can be obtained 

using fuzzy intersection (minimum) operation 

 i = min{μA1
i (x1 ),μA2

i (x2 )}           (9) 

 where μ
A1
i (x1 )  and μ

A2
i (x2 )  are the MFs of fuzzy sets 

A1
i
 and A2

i
. 

• Implication. Implication is to shape the conclusion of 
a rule by using the firing strength obtained from the 
premise. In other words, the firing strength is 
implicated with the value of the conclusion MF by 
using fuzzy intersection operation and the output is a 
truncated fuzzy set. The implication using fuzzy 
intersection (minimum) operation is given by 

 μ
impi
(y) = min{ i ,μBi

(y)}         (10) 

 where μ
Bi
(y)  is the MF of conclusion part of a fuzzy 

rule and μ
impi
(y)  is the MF of the truncated fuzzy set 

after implication. 

• Aggregation. Aggregation is the process in which the 
truncated fuzzy sets that represent the implication 
outputs of each rule are aggregated into a single fuzzy 
set. The aggregation using fuzzy union (maximum) 
operation can by obtain by 

 μagg (y) = max{μimp1
(y),μ

imp2
(y), ,μ

impr
(y)}       (11) 

 where μagg (y)  is the MF of the fuzzy set after 

aggregation. 

2.4.4. Defuzzification 

 On the basis of the aggregated fuzzy set, defuzzification 
calculates the defuzzified value, which is a crisp value, 
standing for the final result of the fuzzy inference. The 
centroid of area method, which determines the centre of 
gravity of an aggregated fuzzy set, is the most frequently 
used method in the fuzzy reasoning systems [3, 8, 11, 13, 
23], defined as 

ydef =
μagg (y)y dyy

μagg (y)dyy

 (12) 

where μagg (y)  is the aggregated output MF. 

3. A RAILWAY SAFETY RISK ASSESSMENT 
MODEL 

 The railway safety risk assessment model as shown in 
Fig. (3) includes the development of the qualitative 
descriptors for representing risk inputs, i.e. FP and CS, risk 
output, i.e. RL, and fuzzy rule base that presents the 
relationship between risk inputs and outputs. The qualitative 
descriptors are haracterized within fuzzy MFs. The fuzzy 
rule base is determined by data and failure analysis, human 
expert judgement, and engineering knowledge analysis. The 
RL of a failure event in the railway safety risk analysis is 
determined by two risk factors, i.e. FP and CS of a failure or 
hazard event [2, 4, 6, 12, 13, 15, 16, 25, 26]. 

 

 

Fuzzification
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Engine
Defuzzification
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Fig. (2). Fuzzy inference system (FIS). 
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3.1. Qualitative Descriptors 

 If a variable can take words in natural language as its 
value, it is called a qualitative descriptor, where the words 
are characterised by fuzzy sets defined in the universe of 
discourse in which the variable is defined. A qualitative 
descriptor is characterised by (X, T, U, M) [2, 3, 15, 16]. 

• X is the name of the qualitative descriptor, for 
example, X is FP of an item. 

• T is the set of qualitative values that X can take, for 
example 

 TFP = {Improbable, Remote, Unlikely, Possible, 

Likely, Frequent}         (13) 

 TCS = {Minor, Major, Severe, Fatal}       (14) 

 TRL = {Low, Possible, Substantial, High}      (15) 

• U is the actual physical domain in which the 

qualitative descriptor X takes its quantitative (crisp) 

values, for example, U = [FPossible ,FLikely ].  

• M is a semantic rule that relates each qualitative value 
in T with a fuzzy set in U, for example, M relates 
Improbable, Remote, Unlikely, Possible, Likely and 
Frequent with the specific MFs of FP. Similarly, M 
relates Minor, Major, Severe and Fatal with the 
specific MFs of CS, and Low, Possible, Substantial 
and High with the specific MFs of RL. 

 The concept of qualitative descriptors is important 
because qualitative descriptors are the most fundamental 
elements in human knowledge representation. When sensors 

are used to measure a variable, they give us numbers. When 
human experts are asked to evaluate a variable, they give us 
words. Hence, by introducing the concept of qualitative 
descriptors, it enables safety risk analysts to formulate vague 
descriptions in natural languages in precise mathematical 
terms. This will be able to incorporate human knowledge 
into engineering systems in a systematic and efficient 
manner. 

 Fuzzy qualitative descriptors are extensions of numerical 
variables in the sense that they are able to represent the 
condition of an attribute at a given interval by taking fuzzy 
sets as their values [1-3]. The values obtained in the 
development of fuzzy qualitative descriptors are considered 
as fuzzy-measuring attributes of objects, in this case, RLs. 

 The two fundamental parameters used to assess RL of a 
railway system on a subjective basis are FP and CS. 
Subjective assessment, for example, use of qualitative 
descriptors instead of ultimate numbers in probabilistic 
terms, is more appropriate to conduct safety risk analysis on 
these two parameters, as they are always associated with 
great uncertainty. Thus, these two parameters are represented 
by natural languages, which can be further described by the 
MFs. A MF is a curve that defines how each point in the 
input space is mapped to a membership value between 0 and 
1. The fuzzy MFs are generated utilizing the linguistic 
categories identified in the knowledge acquisition and 
consisting of a set of overlapping curves. 

 The FP in terms of qualitative descriptors are defined as 
Improbable, Remote, Unlikely, Possible, Likely and 
Frequent. Based on the definitions used in the Workplace 
Risk Assessment (WRA) methodology [25, 26], according to 

Fig. (3). Railway safety risk assessment model using fuzzy inference system. 
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the data collected from the railway industry, Table 1 
describes the categories of FP, i.e. the number of times an 
event occurs over a specified period of time. For example, 
qualitative descriptor Remote is defined to cover the 
likelihood ranging from occurring once every ten years (0.1) 
to occurring once every year (1.0) and qualitative descriptor 
Possible indicates likelihood ranging from occurring once 
every year (1.0) to occurring once every month (10). As the 
qualitative descriptors are categorized according to WRA 
values used in WRA [25, 26], the trapezoidal and triangular 
MFs are assigned to characterise these qualitative 
descriptors. The qualitative descriptors Improbable and 
Frequent are defined as trapezoidal MFs and others are 
defined as triangular MFs as shown in Fig. (4) and Table 1 
shows the MF parameters. 
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Fig. (4). MFs of failure probability. 

 The CS is described as Minor, Major, Severe and Fatal 
according to staff risk model used in WRA [25, 26]. The 
definitions of qualitative descriptors about CS are given in 
terms of the number of fatalities, major and minor injuries 
resulting from the occurrence of a particular hazardous event 
as shown in Table 2. In this study, minor and major injuries 
are equated to fatalities, i.e. a minor injury is equated to 
0.001 fatalities, a major injury to 0.01 fatalities and severe 
injury to 0.1 fatalities. The qualitative descriptors Minor and 
Fatal are defined as the trapezoidal MFs while Major and 
Sever as triangular MFs as shown in Fig. (5). Their MF 
parameters are chosen according to WRA values [16, 17] 
and listed in Table 2. 
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Fig. (5). MFs of consequent severity. 

 The fuzzy set of RL in terms of qualitative descriptors is 
defined as Low, Possible, Substantial and High [3, 12, 13, 
15, 16]. Their definitions are generally similar to those 
described in EN50126, EN50129, and GE/GN8561 [5, 24, 
27] are listed in Table 3. The risk score is defined in a 
manner that the lowest score is 0, where as the highest score 
is 10. For example, qualitative descriptor Low is defined on 
the basis of the risk score ranging from 0 to 1. Similar to the 
input qualitative descriptors of FP and CS, the trapezoidal 
MFs are used to describe the RL as shown in Fig. (6). The 
result of RLs can be expressed either as risk score located in 
the range from 0 to 10 or as risk category with a belief of 
percentage. 

3.2. Fuzzy Rules 

 Fuzzy rule base consists of a set of fuzzy IF-THEN rules. It 
is the core of a fuzzy logic system in the sense that all other 
components are used to implement these rules in a reasonable 
and efficient manner. The fuzzy rules as described in Section 2 
are basically built through the study of engineering knowledge, 
historical incident, and accident information. The human experts 
have a good intuitive knowledge of the system behaviour and 
risks involved in various types of failures. As the fuzzy rules are 
linguistic rather than numerical, they provide a natural 
framework for expressing human knowledge. Thus, experts 
often find fuzzy rules to be a convenient way to express their 
knowledge about the relationship between input and output 
variables. These sources are not mutually exclusive and a  
 

Table 1. Qualitative Descriptors of Failure Probability 

 

Qualitative Descriptors Description Likelihood (Event/Year) WRA Value MF Parameters 

Improbable <1 in 100 years/ extremely unlikely <0.01 1 0, 0, 1, 5 (Trapezoid) 

Remote 1 in 10 years to 1 in 1 year  0.1-0.3 5 1, 5, 7 (Triangle) 

Unlikely 1 in 1 year to 1 in 10 years 0.3-1 7 5, 7, 11 (Triangle) 

Possible 1 in 1 year to 1 in 1 month 1-10 11 7, 11, 15 (Triangle) 

Likely 1 in 1 month to 1 in 1 week 10-50 15 11, 15, 17 (Triangle) 

Frequent >1 in 1 week >50 17 15, 17, 20, 20 (Trapezoid) 
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combination of them is often the most effective way to 
determine the rule base. 
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Fig. (6). MFs of risk level. 

 Several factors also have an influence in developing the 
fuzzy rule base as follows [2, 3, 12, 13]. 

• Completeness. The fuzzy rule base should cover all 
matches between inputs and outputs. 

• Number of rules. Although there is no general 
procedure for deciding the optimal number of rules, 
the decision should consider importance of 
performance, efficiency of computations and choice 
of qualitative descriptors. 

• Consistency and correctness. The choice of fuzzy 
rules should minimise the possibility of contradiction 
and unwanted interactions between the rules. 

 In this study, as FP has six qualitative descriptors and CS 
has four qualitative descriptors, their combination, connected 
with “and”, leads to total twenty-four rules, as listed in Table 
4. These rules are subjectively defined based on the expert 
experience and engineering judgment. For example, the rule 
at bottom left of Table 4 would be expressed as follows. 

 IF failure probability is improbable and consequent 
severity is minor THEN risk level is low. 

 There are two parts combined through an intersection 
operator “and” in the premise of the above rule. If the 
premise has a true value via an “and” operator, the premise 
will be fired and will contribute to the fuzzy conclusion, in 
this case, RL. If the premise is true to some degree of 
membership, then the conclusion is also true to that same 
degree. 

 The importance of fuzzy IF-THEN rules stems from the 
fact that human expertise and knowledge can often be 
represented in the form of fuzzy rules [2, 3, 12, 13]. Rules 
based on these types of qualitative descriptors are more 
natural and expressive than numerical numbers and 
calculations. The fuzzy rules also allow quantitative data 
such as the FP, and qualitative or judgemental data such as 
severity of consequence to be combined in a uniform manner 
for the RL. 

4. IMPLEMENTATION OF THE INTELLIGENT 
RAILWAY SAFETY RISK ASSESSMENT SYSTEM 

4.1. System Module Structure 

 An intelligent railway safety risk assessment system 
based on the proposed approach has been developed. The 
system has been written for a PC platform in C++ and 
operates under Windows 98, 2000, 2007 and XP. The 
modular structure of the proposed intelligent system is 
shown in Fig. (7), which consists of two main modules, i.e. 
fuzzy inference system (FIS) and Graphical user interface 
(GUI): 

1. Fuzzy inference system 

 This module implements the FIS as described in Section 
0 and consists of the following four sub-modules: 

(a) Fuzzification. The fuzzification converts the crisp 
inputs of FP and CS into fuzzified inputs located 
between 0 and 1 with respect to the corresponding 
MF. The input can be a numerical value or an interval 
value that indicates the input uncertainty. 

(b) Implication. The implication is to shape the 
conclusion part of fired rule from the premise part to 
the conclusion part of a fired or active rule by using 
the fuzzy “and” operator. Evaluation of fuzzy rules is 
to determine which rule in the rule base is fired or 
not. If a rule has a true value in its premise, it will be 
fired and then contributed to the conclusion part. 

(c) Aggregation. Aggregation is the process to synthesize 
the fuzzy sets, which represents the outputs of all fired 
rules into a single fuzzy set by using fuzzy “or” operator. 

(d) Defuzzification. Defuzzification is to convert the 
aggregated results produced from aggregation to a 
crisp output that represents the final result of fuzzy 
inference, i.e. risk score and risk categories with a 
belief of percentage. 

2. Graphical user interface 

 This module implements the interface for the data 
exchange between the user and the computer, which includes 
the following sub-modules: 

Table 2. Qualitative Descriptors of Consequent Severity 

 

Qualitative Descriptors Description Equivalent Fatalities (EF) WRA Value MF Parameters 

Minor < 3 days off work 0.001 1 0, 0, 1, 5 (Trapezoid) 

Major Between 3 days and 1 months off work 0.01 5 1, 5, 7 (Triangle) 

Severe > 1 month off work 0.1 7 5, 7, 12 (Triangle) 

Fatal Fatality 1 12 7, 12, 15, 15 (Trapezoid) 
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(e) MF Setup. This module enables users to set up 
qualitative descriptors, MFs and input values. It 
consists of Add MF, Delete MF and Change MF 
functions for the MF construction and maintenance. 

(f) Rule Base. This module contains fuzzy rules. The 
construction of a fuzzy rule is based on the qualitative 
descriptors developed in the MF setup module and 
connected with “and” or “or” operator. The functions 
of Add Rule, Delete Rule and Change Rule enable the 
user to add new fuzzy rules, delete the existed fuzzy 
rules and change the behaviours of fuzzy rules from 
the rule base. 

(g) Fuzzy Operation. The module sets up fuzzy 
operations required in the FIS including fuzzy “and”, 
“or”, implication, aggregation and defuzzification. 

(h) Batch Process. Users can assess the RL of a set of 
failure events and subsystems and/or a system. A set 
of input values can be added, changed or deleted via a 
grid control by using Add and Delete Record 
functions. The establishment of a set of events can be 
saved into a text file and the file can also be loaded 
again into the system by using Save File and Load 
File functions. 

(i) Results Display. This module can display the results 
of implication, aggregation and final RL. For 
example, Display Final Results function shows the 
risk score and risk categories with a belief of 
percentage, and Display Process Results function 
shows the results of implication and aggregation. 

 The main benefit of using this type of structure is that the 
data are completely separated from the users. This 
independence enables modifications to be made to each of 
the modules individually with little or no impact on the 
others. This is useful if, for example, certain MFs within the 
system need updating, as it can be done without affecting the 
behaviour of the other modules. 

 In railway safety risk assessment, the input values of FP 
and CS are required. As stated earlier in this article, because 
the process of risk analysis is very complex and data 
available may be incomplete for risk assessment in many 
circumstances, it may be extremely difficult to conduct 
traditional probabilistic risk analysis to assess the occurrence 
likelihood of hazards and the magnitude of their possible 
consequences because of the great uncertainty involved. For 
example, assume the input value of FP is 8 as indicated by 
the vertical line as shown in Fig. (8), the input is fuzzified to 
be Unlikely and Possible with a belief of 75% and 25%, 
respectively. These MF values are then used in safety risk 
assessment process. However, even with detailed guidelines, 
it is often difficult to translate feelings and experience into a 
number that represents exactly how much more one 
parameter impacts on a given event than other. In this case, 
as described in the Fuzzification module, if the exact value 
of a FP or CS is not acquired, an interval value can be used 
as uncertain input. The uncertainty is processed in a manner 
that the values near the centre of interval are assumed to be 
more certain than those near the edges, and the width of the 
interval indicates the amount of uncertainty in the input. For 
example, the FP of an event is around 9 to 16 and most likely 
to be 13 in the universe of (0, 20). The input values of FP are 

Fig. (7). Risk assessment system model structure. 
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interval as shown in Fig. (8). Therefore, the values near the 
centre of interval are assumed to be more certain than those 
near the edges. Such an interval input is associated with a 
triangular MF. The points of intersection between the MF of 
interval input and the relevant MF of input qualitative 
descriptors are treated as the fuzzified inputs. As shown in 
Fig. (8), in this case, the input of FP lies in the range from 9 
to 16 and mostly to be 13 associated with a triangular MF. It 
can be seen that the interval input has intersection points 
with qualitative descriptors Unlikely, Possible, Likely and 
Frequent. It indicates that this interval input belongs to these 
four categories of FP with different MF values. The values 
of intersection points between the interval input and the 
fuzzy MF are the solutions of a non-linear equation below 

f (x) = μA (x) μB (x) = 0  (16) 

where μA (x)  and μB (x)  are the MF of the interval input and 

a qualitative descriptor, respectively. The numeric analysis 

approach, secant method, has been employed to calculate 

intersection points [14]. 

 Assume two initial approximations p0  and p1 , the 

following equation is used to calculate the iterative solutions 

of f (x) = 0 : 

pk+1 = pk
f (pk )[pk pk 1 ]

f (pk ) f (pk 1 )
    for k = 1, 2,  (17) 

where k  is the index of iteration. 
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Fig. (8). MFs of failure probability. 

 The following pseudo codes describe the uncertainty 
processing: 

PROCEDURE uncertainty processing 

BEGIN 

FOR i: = 1 to No. of MFs 

CALL: Secant-method (uncertainty input, current MF) 

IF find intersection THEN 

Store them 

ENDIF 

ENDFOR 

END 

 For example, as illustrated in Fig. (8), the interval input 
has one intersection point withMFs of Unlikely, Possible, 
Likely and Frequent. As the two functions are stepwise linear 
functions, the value pairs, (5, 6), (6, 7), (7, 8), (8, 9), (9, 10), 
(10, 11), (11, 12), (12, 13), (13, 14), (14, 15), (15, 16), (16, 
17), (17, 18), (18, 19) and (19, 20), are chosen as the initial 
values. Fifteen sessions of calculation are executed on the 
basis of the fifteen pairs of the initial values to find 
intersection points between the interval input and the 
qualitative descriptors Unlikely, Possible, Likely and 
Frequent. In this case, there are four intersection points: (10, 
0.24), (11.8, 0.76), (14.1, 0.71) and (15.5, 0.18). In other 
words, the inputs are fuzzified to be Unlikely with a belief of 
24%, Possible with a belief of 76%, Likely with a belief of 
71% and Frequent with a belief of 18%. Similarly, the 
uncertainty associated with CS can also be traded using 
equations (16) and (17). These fuzzified input values are 
then used by the FIS to assess the RL. 

 As described earlier in this section, the Batch Process 
module deals with risk assessment from component level, 
then progressing up to the subsystem level and finally to the 
system level. The pseudo codes for risk assessment at 
subsystem and/or system level are listed as follows 

PROCEDURE system level risk assessment 

BEGIN 

REPEAT 

Read a failure event. 

Run main FIS operation. 

Get risk level of component level. 

Get the aggregation results of this failure event. 

Combine these aggregation results with previous one. 

UNTIL reach the final failure event. 

Perform defuzzification on the combined aggregation 
results. 

END 

4.2. Application of the Proposed Intelligent System for 
Railway Safety Risk Assessment 

 Some screen shots of the proposed intelligent railway 
safety risk assessment system are shown in Figs. (9- 12). The  
proposed intelligent system can be used to assess the risk of 
a failure event with quantitative and qualitative information, 
the risks of a set of failure events and sub-systems and/or a 
system. Using GUI, qualitative descriptors and their MFs can 
be easily set up. Based on these qualitative descriptors, the 
rule base can be established correspondingly. Once the 
qualitative descriptors, MFs and rule base have been set up, 
the system is ready to process safety risk analysis. The 
system consists of a number of tab pages to deal with the MF 
parameter setup, rule base development, fuzzy operation 
selection, process result and final result display, which are 
described as follows. 

• Failure Probability Tab. Users can set up qualitative 
descriptors of FP, types of MFs and their 
corresponding parameters as shown in Fig. (9). The 
command bottoms, Add MF, Delete MF and Change 
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MF, provide editing functions for MFs development. 
When the user enters the parameters of a MF, the 
system will check the validity of the parameters 
automatically. If they do not satisfy the required 
conditions, an error message box will prompt the user 
to check the parameters and enter the correct 
parameters. The text box of Value allows the user to 
enter the value of FP. For example, when a numerical 
value of 7 is input into the text box of Value and a 
vertical line as shown in Fig. (9) in the graphical 
window of Membership Function Plot indicates such 
an input. In some cases, where no exact value of FP is 
known, the user can input two values separated by a 
comma as an interval input to indicate the 
uncertainty. The interval values will be shown in the 
graphical window of Membership Function Plot with 
a triangular MF. 

• Consequent Severity Tab. This tab has the exact same 
functions as Failure Probability Tab to set up the 
qualitative descriptors and their MFs of CS. 

• Risk Level Tab. Similar to Failure Probability Tab 
and Consequent Severity Tab, this tab enables the 
user to set up the qualitative descriptors and MFs of 
RL. 

• Rule Base Tab. This tab is used to construct fuzzy 
rules based on qualitative descriptors of FP, CS and 
RL expression. For example, when the user adds a 
new rule as shown in Fig. (10), the input qualitative 
descriptor of Failure Probability from Inputs combo 
box can be selected and then one of qualitative values 
will be added to the box of If. Similarly, the 
qualitative descriptor of Consequent Severity can be 
selected and its value will be added to the If box with 
a connection of OR/AND by clicking the radio 
button. The above two steps are used to construct the 
premise part of a fuzzy rule. Then an output 
qualitative value from the box of then output is, i.e. 
Low, Possible, Substantial and High can be selected. 
Finally, by pressing Add Rule button to add the rule 
into rule base which will be shown in the box of 
Rules. If a rule needs to be deleted from the rule base, 
the user can select such a rule from the box of Rules 
and then press Delete Rule button to do so. If a rule 
needs to be edited from the rule base, the user can 
select such a rule from the box of Rules, make 
necessary change and then press Change Rule button. 

• Project Tab. The user can choose fuzzy operations 
such as AND, OR, Implication, Aggregation and 
Defuzzification from the corresponding combo boxes 
as shown in Fig. (11). The text box of Name shows 
current project name. The user can change the project 
name on the basis of particular cases. When all of the 
parameters are set up, the results are then shown in 
the result windows by pressing command button Run. 
The graphical window of Final Result shows the MFs 
of RL with the defuzzified value and its percentages 
belonging to the defined qualitative descriptors. By 
pressing Previous Result and Next Result buttons, the 
user can see the firing strength and its implication 
results of each rule. The graphical window of 

Progress Results illustrates the results of implication 
and aggregation. 

• Data Grid Tab. Users can add the values of FP and 
CS of failure events to the data grid, change or delete 
them via this tab. These values of FP and CS, can be 
saved into a comma-separated-value (CSV) file by 
pressing command button Save. When the values of 
FP and CS are needed to be exported from other data 
format, such as Excel format, into a CSV file, the 
system is able to load such a data file into the data 
grid tab by pressing command button Load. Once the 
values of FP and CS have been loaded into the data 
grid tab, by pressing command button Run and the RL 
of each failure event is displayed in the column of 
Risk Level as shown in Fig. (12). Also the RLs of 
subsystem and/or a railway system with respect to all 
of these failure events are computed and listed in the 
column of Risk Level of System. 

5. AN ILLUSTRATIVE EXAMPLE: METRONET 
STAFF RISK ASSESSMENT 

 An illustrative example of staff risk assessment is used to 
demonstrate the proposed intelligent railway safety risk 
assessment system using fuzzy reasoning approach. The 
input parameters are FP and CS of hazardous events. The 
outputs of safety risk assessment are the RLs of specific 
hazards, hazard groups and a railway depot. The hazard 
group RLs are produced using the fuzzy reasoning approach 
based on the aggregation results of each specific hazard 
belonging to the particular hazard group. The RL of the 
railway depot is computed based on the aggregation of the 
RLs of each hazard group. The format of output has two 
forms. One is risk score located from 0 to 10 and other one is 
risk categorized as Low, Possible, Substantial and High with 
a belief of percentage. The data set has been collected from 
the industry and the example has been involved to assess the 
risk to staff in a typical depot, Northumberland Park, in 
which a number of hazard groups are defined as [19, 26] 

• Electricity: The specific hazards include arcing eye, 
arcing from 630V, attaching or removing targets, 
contact with 630V during task, contact with low 
voltage, gaining entry to unit, removing or inserting 
630 volt jumpers, walking in pit, walking near live 
track, and so on. 

• Falling Objects: The specific hazards include stacked 
items, tools and train parts. 

• Fire/Explosion: The specific hazards include burning 
equipment, gas cylinder and hose leakage, ignition of 
flammable gases and ignition of flammable solvent. 

• Hand Tools: The hazards include ejection of material 
from hand tools, entanglement with hand tools and 
minor injury from hand tools. 

• Health Hazards: The specific hazards include glazing, 
corrosive substance, irritant substance, noise/ vibration, 
particulates/dust, toxic substance, and so on. 

• Machinery: The specific hazards include compressed air, 
crushing, ejection of material from machinery, 
entanglement with machinery and minor injury from 
machinery. 
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Fig. (9). Failure probability tab. 

 

Fig. (10). Rule base tab. 
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Fig. (11) Risk level tab. 

 

Fig. (12). Data grid tab. 
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• Manual Handling: The specific hazards include changing 
train parts, lifting loads, maneuvering loads, operating 
machinery and contacting overhead 630V jumper. 

• Slips, Trips & Falls: The specific hazards include 
access/egress from pit, access/egress from unit, 
attaching/removing targets (above the pit), attaching/ 
removing targets (in the pit), descending/climbing 
stairs, driving vehicles near the pit, from height (e.g. 
ladders), from unit during task, through opening trap 
door/manhole, walking around depot and walking 
around depot (into the pit). 

• Vehicle Collision: The specific hazards include collis-
ion with another train, collision with plants/people 
and collision with uncontrolled movement of units. 

 Each hazard group is divided into specific hazards, which 
consists of a large number of failure events. These specific 
hazard events have been saved as Excel data files which can 
be read directly by the proposed intelligent railway safety 
risk assessment system. 

 The qualitative descriptors of FP and their MFs are 
defined as Improbable, Remote, Unlikely, Possible, Likely  
and Frequent as shown in Fig. (4). The CS is described as 
Minor, Major, Severe and Fatal which are characterised by 
triangular and trapezoidal MFs as shown in Fig. (5). The 
qualitative descriptors of FP and CS have been used to assess 
RL of each specific hazard. The results are listed in Table 6. 
The qualitative descriptors of RL and their MFs are defined 
as Low, Possible, Substantial and High as shown in Fig. (6). 
The RL of each specific hazard event obtained is represented 
by a risk score ranging from 0 to 10 and the risk categories 
defined in Table 3 with a belief of percentage belonging to 
these categories. Table 4 gives the fuzzy rules to describe the 
relationships between the FP, CS and RL, which has been 
used to assess RLs of staff risks at Northumberland Park 
Depot. The hazard group RLs are produced using the fuzzy 
reasoning approach based on the aggregation results of each 
specific hazard belonging to the particular hazard group. The 
RL of the railway depot is computed based on the 
aggregation of the RLs of each hazard group. 

Table 3. Qualitative Descriptors of Risk Level 

 

Qualitative Descriptors Description Risk Scores MF Parameters 

Low Review subject to availability.  0 – 1 0, 0, 1, 3 (Trapezoid) 

Possible Review to be carried out and corrective action implemented. 3 – 4 1, 3, 4, 6 (Trapezoid) 

Substantial Review and corrective action to be carried out. 6 -7 4, 6, 7, 9 (Trapezoid) 

High Need immediate corrective action. 9 – 10 7, 9, 10, 10 (Trapezoid) 

 
Table 4. Rule Base of Staff Risk Assessment 

 

Failure Probability (FP) 
Consequent Severity (CS) 

Improbable Remote Unlikely Possible Likely Frequent 

Fatal Possible Possible Substantial Substantial High High 

Severe Low Possible Possible Substantial Substantial High 

Major Low Low Possible Possible Substantial Substantial 

Minor  Low Low Low Possible Possible Substantial 

 
Table 5. Risk Calculation of Hazard Groups at Northumberland Park Depot 

 

Hazard Groups WRA Records Risk Scores Risk Categories 

Electricity 380 2.56 Low: 22%, Possible: 78% 

Falling Objects 32 2.56 Low: 22%, Possible: 78% 

Fire / Explosion 12 1.06 Low: 97%, Possible: 3% 

Hand Tools 35 2.56 Low: 22%, Possible: 78% 

Health Hazards 72 4.07 Possible: 97%, Substantial: 3% 

Machinery 64 4.07 Possible: 97%, Substantial: 3% 

Manual Handling 178 4.07 Possible: 97%, Substantial: 3% 

Slips, Trips & Falls 493 2.56 Low: 22%, Possible: 78% 

Vehicle Collision 24 2.56 Low: 22%, Possible: 78% 

Railway Depot:  1290 4.07 Possible: 97%, Substantial: 3% 
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Table 6. Risk Calculation of Specific Hazards at Northumberland Park Depot 

 

Hazard Group Specific Hazards WRA Records Risk Scores Risk Categories 

Arcing eye 2 1.06 Low: 97%, Possible: 3% 

Arcing from 630V 126 1.06 Low: 97%, Possible: 3% 

Attaching/removing targets  39 2.56 Low: 22%, Possible: 78% 

Contact with 630V during task  38 2.56 Low: 22%, Possible: 78% 

Contact with low voltage 5 2.56 Low: 22%, Possible: 78% 

Gaining entry to unit  39 2.56 Low: 22%, Possible: 78% 

Removing / inserting 630 volt jumpers 8 2.56 Low: 22%, Possible: 78% 

Walking in pit 11 2.56 Low: 22%, Possible: 78% 

Electricity 

Walking near live track or shoegear 112 2.56 Low: 22%, Possible: 78% 

Stacked items 2 1.06 Low: 97%, Possible: 3% 

Tools 4 1.06 Low: 97%, Possible: 3% Falling Objects 

Train parts, etc 26 2.56 Low: 22%, Possible: 78% 

Burning equipment 3 1.06 Low: 97%, Possible: 3% 

Gas cylinder/hose leakage 2 1.06 Low: 97%, Possible: 3% 

Ignition of flammable gases 2 1.06 Low: 97%, Possible: 3% 
Fire / Explosion 

Ignition of flammable solvent 5 1.06 Low: 97%, Possible: 3% 

Ejection of material from hand tools 8 2.56 Low: 22%, Possible: 78% 

Entanglement with hand tools 16 1.06 Low: 97%, Possible: 3% Hand Tools 

Minor injury from hand tools 11 1.06 Low: 97%, Possible: 3% 

Glazing 4 1.06 Low: 97%, Possible: 3% 

Corrosive substance 2 1.06 Low: 97%, Possible: 3% 

Irritant substance 27 4.07 Possible:97%, Substantial: 3% 

Noise/Vibration 12 4.29 Possible:86%, Substantial: 14% 

Particulates and Dust 20 1.06 Low: 97%, Possible: 3% 

Health Hazards 

Toxic substance 7 2.56 Low: 22%, Possible: 78% 

Compressed air 29 4.07 Possible:97%, Substantial: 3% 

Crushing 17 2.56 Low: 22%, Possible: 78% 

Ejection of material from machinery 2 4.29 Possible:86%, Substantial: 14% 

Entanglement with machinery 7 1.06 Low: 97%, Possible: 3% 

Machinery 

Minor injury from machinery 9 1.06 Low: 97%, Possible: 3% 

Changing train parts 65 4.29 Possible:86%, Substantial: 14% 

Lifting loads 29 2.56 Low: 22%, Possible: 78% 

 Maneuvering loads 13 1.06 Low: 97%, Possible: 3% 

Operating machinery 1 1.06 Low: 97%, Possible: 3% 

Manual Handling 

Overhead 630V jumper 70 1.06 Low: 97%, Possible: 3% 

Access/egress from the pit 15 1.06 Low: 97%, Possible: 3% 

Access/egress from the unit 16 2.56 Low: 22%, Possible: 78% 

Attaching/removing targets (above the pit) 76 1.06 Low: 97%, Possible: 3% 

Attaching/removing targets (in the pit) 2 1.06 Low: 97%, Possible: 3% 

Descending/climbing stairs 119 1.06 Low: 97%, Possible: 3% 

Driving vehicle near pit 1 3.50 Possible: 100% 

From height (e.g. ladders) 4 2.56 Low: 22%, Possible: 78% 

From unit during task 13 2.56 Low: 22%, Possible: 78% 

Through opening trap door/manhole 4 1.06 Low: 97%, Possible: 3% 

Walking around depot 132 1.06 Low: 97%, Possible: 3% 

Slips, Trips & 
Falls 

Walking around depot (into the pit) 111 1.06 Low: 97%, Possible: 3% 

Collision with another train 13 1.06 Low: 97%, Possible: 3% 

Collision with plants/people 5 2.56 Low: 22%, Possible: 78% Vehicle Collision 

Collision with uncontrolled movement of units 6 1.06 Low: 97%, Possible: 3% 
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 The number of WRA risk records associated with the 
Northumberland Park Depot is 1290. By using the proposed 
intelligent system, the risk score of staff risk at the 
Northumberland Park Depot is 4.07 and risk categories of 
Possible and Substantial with a belief of 97% and 
3%respectively. As can be seen from Table 5 that Health 
Hazards, Machinery and Manual Handling hazard groups 
have the highest risk scores of 4.07, which belongs to 
Possible (97%) and Substantial (3%). The Fire/Explosion 
hazard group has the lowest risk score of 1.06 and risk 
categories of Low and Possible with a belief of 97% and 3% 
respectively. 

 The risks of specific hazards associated with 
Northumberland Park Depot are listed in Table 6. The 
hazards, for example, Noise/Vibration, Ejection of material 
from machinery and Changing train parts, have the highest 
risk scores of 4.29 belonging to Possible and Substantial 
with a belief of 86% and 14% respectively. 

6. CONCLUSIONS 

 This paper presents a proposed intelligent system for 
railway safety risk assessment. The development of fuzzy 
qualitative descriptors and their MFs of FP, CS and RL 
expressions to quantify RLs are discussed. The relationship 
between the risk factors and RL expressions represented by 
the fuzzy rules are described. 

 The fuzzy reasoning approach offers a great potential in the 
safety risk modelling of railway systems, particularly, when the 
safety risk data are incomplete or there is a high level of 
uncertainty involved in the safety risk data. Safety risk analysis 
by using fuzzy reasoning approaches can formulate domain 
human experts’ knowledge and engineering judgements. 
Furthermore, the knowledge base can be built by transforming 
information from various sources in the fuzzy logic inference 
process. The proposed intelligent railway safety risk assessment 
system can provide comprehensive results of safety risk analysis 
in two formats, i.e. risk score in a defined region and risk 
categories with a belief of percentage. The risk categories 
employ the qualitative descriptors that are more expressive and 
natural way to describe the risk issues. This can promote the 
understanding of risks associated with a railway system. An 
illustrative example of staff risk assessment at Northumberland 
Park Depot has been carried out to evaluate the performance of 
the proposed intelligent system. The results of the case study 
demonstrated that there are benefits to be gained by using the 
proposed intelligent system. The results produced from safety 
risk assessment provide railway engineers, maintainers, and 
managers with valuable information for risk response decision-
making. The proposed intelligent railway safety risk assessment 
system will provide railway safety risk analysts, operators, 
infrastructure engineers, and managers with a method and tool 
to improve their safety management, and set safety standards. 
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