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Abstract: This paper proposes a new queue prediction model based on the data that can be collected from a single loop 
detector positioned at the stop line of signalised intersections. A number of different model forms were explored using an 
enhanced NGSIM dataset. These data were filtered to represent the data that can be typically collected from a stop line 
detector loop. The best six models resulted in an accuracy ranging from 83% to 95% to correctly predict the state of 
vehicle’s discharge close to the stop line that is whether it is a queued or platooned vehicle. When combined with a logical 
filter to group sequential vehicles, it enables a traffic controller to estimate the most likely queue length. The proposed 
model will form part of a new offset optimizer algorithm currently under development. 
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1. INTRODUCTION 

 Optimising traffic signals often rely on inductive 
detector loops that can only provide limited data to signal 
controllers, from which it continually adjust green splits, 
cycle time, and offsets. However, effective offset times 
need to consider the time to discharge a downstream queue, 
and therefore an estimate of the next cycle’s queue length 
becomes an important variable to optimise the system. 
Inductive loop detectors can only provide limited, point 
observed data, to a traffic control system, typically these 
being occupancy, volumes, headways and follow-up gaps 
between the vehicles as they pass over the loop. 
 Occupancy is the time a vehicle occupies the loop, 
measured from the time the front of the vehicle enters the 
detection zone to the time when the rear of the vehicle leaves 
the detection zone. Headway is the time to travel from the 
front centre of the vehicle (at the speed of the vehicle) to the 
front centre of the preceding vehicle. Follow-up gap is the 
time between the back of the leading vehicle and the front of 
the following vehicle measured in time at a single point of 
observation. 
 However, other traffic flow values such as vehicle speed 
can be derived using relationships between space-time and 
speed [1]. However, it is also necessary for the controller to 
know the effective length of a vehicle to enable an accurate 
prediction of speed. A heterogeneous traffic stream with 
different vehicle lengths reduces the accuracy. 
 A single loop detector at the stop line in isolation of other 
loops, cannot measure a queue on an intersection approach. 
This paper proposes a new method that relies only on a 
single inductive detector placed at the stop line to estimate 
the queue length based on only those traffic flow properties 
that it can detect when it discharges. The discharging queue 
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then serves as a proxy for estimating the next cycle’s queue 
length, assuming that the flow conditions between the 
preceding and successive cycle do not change significantly. 
 The Sydney Coordinated Adaptive Traffic System 
(SCATS), which is widely deployed in Australasia, parts of 
Europe and with limited installations in the USA, does not 
directly measure, or estimate the size of a queue. The lack of 
knowing the queue size often exceeds the offset algorithm’s 
ability to discharge the queue before the upstream platoon 
arrives, thus creating shockwaves and magnifying the 
congestion effect [2]. 
 This paper specifically investigates whether the length of 
queues can be accurately estimated from single loop 
detectors positioned at the stop line. The primary objectives 
of this paper are two-fold: 
1. Identify variables that are suitable to estimate queue 

lengths using empirical data from an urban arterial 
road; 

2. Propose a queue prediction model that can use data 
from a stop line positioned inductive loop detector; 

 The paper is organised as follows; the first part 
described the background and introduces the objectives of 
this paper; the second reviews the literature and analytical 
methods; the third part describes the data and details the 
methodology applied to investigate the problem; the 
fourth part outlines the results of the methods applied to 
develop a conceptual queue estimation model; the fifth 
part discusses the further work required to generalise the 
concept, and the last part summarises the conclusions of 
the research. 

2. LITERATURE REVIEW 

2.1. Queue Estimation 

 Over the past few decades, various types of queue 
models have been developed such as the cumulative input-
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output forms [3], limited by long queues [4] and the detector 
position; travel time using mobile sensors to reconstruct the 
queues [5]; and traffic shockwaves based on continuum flow 
theory relying on comprehensive input information which 
often cannot be collected at the given time. Other include 
linear regression models requiring constant traffic cyclic 
flow conditions, or aggregates detector data, but this smooths 
variations too much and reduces accuracy of detecting the 
back of the queue during highly fluctuating flow conditions 
[4]. 
 The definition of a queue varies considerably as well, it 
ranges from vehicles that were stationary at the start of the 
green, some also include vehicles that joined the back of 
queue after the green started, other describe all vehicles 
travelling in a moving queue below 5mph as a queued 
vehicle [6]. Liu et al. [4] stated that vehicles in a moving 
queue are those that join the queue after the rear of the 
original (standing) queue starts to move. For the purpose of 
this paper, a queued vehicle is one that was queued during 
the red phase and those that joined during the green phase 
that were impeded by the back of the discharging queue are 
classified as queued. 
 Given the accuracy of the data that can be extracted from 
a single loop detector, Liu et al. [4] proposed a prediction 
model, but it relies on a detector loop upstream of the stop 
line, applying shockwave theory to determine the different 
flow states. Furthermore, their methodology relies on high-
resolution data, and event-based data that collect phase 
changes and detector actuation. Typically, SCATS also 
provides this type of data in high resolution. High-resolution 
data is used to identify “break points” in the traffic flow that 
may indicate the difference between the queued vehicles and 
those joining the back of the cleared queue, and platoon-
based upstream vehicles. A similar process using stop line 
detectors to identify breakpoints between queued and 
platooned vehicles was investigated. 

2.2. SCATS 

 The SCATS algorithm is described in detail in Sims 
and Dobinson [1] and Lowrie [7]. A critical assumption in 
SCATS is that it uses the time gap between vehicles and 
applies a steady state traffic flow relationship [8] to 
estimate the speed at the stop line. This estimated speed 
value is applied as a proxy for determining saturation 
conditions. Neither headway nor occupancy time is a 
suitable parameter as it can vary between more than one 
speed value [1]. 
 Offset plan values in SCATS are mostly based on 
observed average travel time, or an assumed constant travel 
speed between intersections. The general use of average 
cruise speeds [9, 10] does not accurately capture the 
exogenous influences and variation in driver behaviour in 
response to the road, geometry, or prevailing traffic 
environment [11]. These influences are exhibited via the 
individual and platoon cruise speed variations, influenced by 
queue discharge, mid-block lane changing, route selection, 
driver anticipation of signal phasing, and other motivation or 
distraction factors [12-16]. 

2.3. Speed from Single Loops 

 Estimating speed from single inductive loops is prone to 
error in mixed flow regimes due to the length of vehicles on 
single inductive loops influences the estimate [1, 17] and is 
not very useful in real-time traffic management applications 
[17, 18]. Nonetheless, for SCATS loops Sims and Dobinson 
[1] stated that where flows are continuous over the entire 
cycle, the average vehicle length could be derived from the 
occupancy data and hence the average speed re-estimated 
within the SCATS algorithm. The true error can only be 
estimated using field data collected from the SCATS system. 

2.4. Headways 

 Previous research focused on the mean headway, found 
that the queue length causes shorter saturation headways 
[19]. Jin et al. [20] found the corresponding mean values 
based on queue position level out gradually, typically after 
the fourth or fifth vehicle. However, Li and Prevedouros [21] 
found headways still decreased up to around the 12th queued 
vehicle. Li and Prevedouros [21] studied the differences 
between long (>20), medium (12 ≤ queue ≤ 20 vehicles) and 
short queues (< 12) and found that the last few vehicles in a 
long queue may produce elongated or compressed headways. 
Examining the variation of headways could form a crucial 
part to differentiate between queued and platooned vehicles. 
More recently based on the data collected from several 
intersections in Auckland, Chaudhry et al. [22] reported that 
headways at stopline continue to decrease even beyond 12th 
vehicle in the queue. Chaudhry and Ranjitkar [23], Chaudhry 
and Ranjitkar [23, 24] proposed new methods to estimate 
capacity and delay at signalized intersection for cases with 
decreasing headways. 

3. METHODOLOGY 

 The objective of this research is to determine if 
continuous input data measured from an inductive loop at the 
stop line can be used to accurately predict the queue 
membership status of the vehicle when it passes over the 
loop. In order to develop a model for predicting queue state, 
which is a categorical variable, binary logistic regression was 
selected to determine the probability of a vehicle being 
queued or platooned. Logistic regression is a part of the 
category of generalized linear models. The generalised 
model form for a logistic regression equation is given as: 

𝑃 𝑌 =   1 1 + 𝑒! !!!!!!!!  !!!!!⋯!!!!!!!    (1) 
where,  
P(Y): Probability of Y occurring 
bn: Regression coefficient 
Xn: Predictor variables 
 Logistic regression makes no assumption about the 
distribution of the independent variables. They do not have 
to be normally distributed, linearly related, or of equal 
variance within each group. Similar applications of binary 
logistic regression to describe traffic flow states can be 
found in [25, 26]. 
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 Fig. (1) shows the outline of the methodology applied to 
develop a predictive model. The goal was to develop a 
predictive queue model by first exploring the data to 
determine which variables are suitable as predictors that best 
explain the variability in queue flow dynamics. The data 
were checked for normality after which appropriate 
inferential tests were applied to determine significant 
differences between groups of data to identify if cut points 
between queued and platooned vehicles were discernible. 
The data refinement process provided new variables that 
may be better at explaining the observed variation in the 
data. 

3.1. NGSIM Data 

 The Federal Highway Administration’s Next Generation 
Simulation (NGSIM) program has made available a detailed 
vehicle trajectory dataset for researchers. Data used in this 
paper were collected from Peachtree Street, an arterial 
primarily running north-south in Atlanta, Georgia. The speed 
limit on the Peachtree Street is 35 mph. A project by the 
University of Idaho [27] developed new insights from an 
analysis of the original NGSIM dataset [28]. 
 Some corrections were made to the dataset such as 
removing negative speed, and correcting the stop line (bar) 
locations. The Statistical Package for Social Scientists 
(SPSS) format dataset represents vehicle trajectories on a 
segment of Peachtree Street in Atlanta, Georgia collected 
between 12:45 p.m. and 1:00 p.m. (set A1) and between 4:00 
p.m. and 4:15 p.m. (set A2) on November 8, 2006. There are 
five intersections; four are signalised, and one is 
unsignalised. 

3.2. Data Refinement 

 The first task was to identify suitable subsets of trajectory 
data that had at least three vehicles either queued or 
platooned at the stop bar so that the flow parameters can be 
extracted and analysed between queued and non-queued 
vehicles as they passed over the stopbar. The filtered dataset 
provided the necessary visual graphing (Fig. 2) of the 
trajectory data showing its longitudinal progression at  
0.1-second time steps. It shows the vehicle schema used to 

identify those vehicles queued and those that join as a 
platoon after the last queued vehicle, together with the signal 
state.  
 To emulate the collection of vehicle data from a SCATS 
detector loop, the data were filtered to represent 20 feet (6 
m) of trajectory records immediately upstream (Fig. 2) of the 
stopbar that corresponds to a typical SCATS detector loop 
location at the stop bar and the most frequently occurring 
vehicle length of 15-20 feet [6]. Trajectories from 123 
vehicles, queued and non-queued were extracted for analysis 
in SPSS over 17 signal cycles spanning both the interpeak 
and afternoon peak periods from the northbound dataset 
only. 
 The subset of data was extracted from the NGSIM 
database from lane 1 and 2, as these represent straight ahead 
movements, which often had the longer queues present. Fig. 
(3) shows the dimensions of the variables. 
 Data were selected from only the green phases that 
contained more than three vehicles in a queue or platoon per 
cycle. Additional variables were coded such as; 

Space Gap (ft) = Spacing between following and 
preceding the vehicle(ft.) – Preceding vehicle length 
(ft.) 

(2) 

 Spacing is the space headway between the front of a 
vehicle and the front of a preceding vehicle; the space gap 
thus represents the physical distance between the two 
vehicles. 

Follow-up Headway (s) = (Vehicle FrameID –  
Preceding Vehicle FrameID) * 0.1 (3) 

 In keeping with the need to use parameters that can be 
directly measured from inductive loops, the occupancy for 
an equivalent standard SCATS detector loop of length 
14.7ft (4.5m) [29] was calculated from the trajectory 
dataset using the measured speed (Vehicle Speed) of the 
vehicle and adding the vehicle length to provide an 
effective vehicle length passing over a virtual loop at a 
fixed point, at a given speed. 

 
Fig. (1). Research structure. 
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Occupancy (s) = (!".!"#!!"!!"#$  !"#$%!)
!"!!"#$  !"##$

   (4) 

 The first step of the analysis was to extract the following 
variables for screening and normality tests and to apply an 
ANOVA test on the selected variables, such as; Vehicle 
Speed (mph), Spacing (ft.), Time Headway (s), Space Gap 
(ft.), Follow-up Headway (s), Occupancy (s). 
 The first analysis set out to determine the properties of 
the trajectory variables between queued and platooned states 
(Fig. 4). The second analysis was centred on determining if 
the breakpoint between the last vehicle in a queue and the 
following platoon leader is a significantly different value that 

can be easily detected and discriminated. The dataset was 
analysed to establish the properties of the variables that can 
be directly collected, or derived, from a single loop detector, 
such as: 
1. The variability between queued and non-queued 

vehicle speed, space headway, time headway, follow-
up headway, space gap and occupancy values, 

2. The variability of the above variables between the last 
queued vehicle and the following platoon leader, and 

3. The variability of the parameters disaggregated by 
queue position. 

 
Fig. (2). Area of subset of records extracted. 

 
Fig. (3). Dimensions of variables.  
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3.3. Properties of Data at the Stop Line 

 The NGSIM dataset used video extraction of the vehicles 
by recording their properties at 0.1 sec intervals. There are 
some known errors in the dataset [30], and these were 
eliminated and filtered out in the extracted records. The data 
were screened to check for normality assumptions and 
outliers and were inspected to examine the variability by 
vehicle position from the start of the green phase (Fig. 4a, 
b). Vehicle Speed showed the clearest distinction between 
queued and platooned vehicles. The Vehicle Speed parameter 
appears to be a good predictor in determining the queued 
status of a vehicle crossing the stop line detector. 

3.4. Model Development 

 Previous researchers attempted to use the variability of 
observed parameters between successive vehicles to 
determine distinctive breakpoints in the traffic flow that 
would differentiate the back of the queue from joining 
platoons of vehicles. This study investigated the variation of 
the flow parameters relative to the queue position to 
determine whether the variation between those queued, and 
those that are platooned, indicates queue membership status. 
The data used for this study had queue lengths of between 2 
and 11 vehicles, and thus should only be generalised within 
those limits until independently verified with data of longer 
queue lengths.  

4. RESULTS 

 The data are mostly non-normally distributed requiring 
the use of non-parametric analysis techniques. The non-
parametric equivalent test for 2-independent samples is the 
Mann-Whitney test [31]. The results of the non-parametric 
tests analysing the variance between the means of queued 
and non-queued vehicles are summarised in Table 1. The 
variables of Vehicle Speed, Space Headway, and Space Gap 
show significant differences in the mean scores between 
queued and non-queued platoons. The data were recoded to 
reflect if the vehicle was either queued at the start of the 

green and joined the queue during the green, or part of the 
platoon joining the back of the queue once the last queued 
vehicle discharged over the detector zone. The traffic state 
can be expressed as a function of the following variables: 

Traffic state = ƒ [speed, headway, spacing, vehicle 
position, signal state] (5)	
  

 A binary logistic regression was run applying various 
methods of variable entry. As there is no preceding research 
to select the order or importance of likely predictors, a small 
sample (n=123) from only the northbound traffic was used 
as a block entry of all the variables as main effects. 
 Using the Wald statistic as an indicator of which 
variables are stronger predictors, various models using the 
backward stepwise method were selected with the stronger 
predictors of Vehicle Speed and Follow-up Headway as the 
first entry block, and Occupancy, Space Gap and Time 
Headway as the second entry block. Based on these results, a 
larger sample (n=346) from both the north and southbound 
traffic was extracted to determine the best model predictors, 
including using a vehicle position as both a categorical 
variable, as well as an interaction term with speed and 
headway. The larger sample improved the predictive 
accuracy, but the goodness of fit suffered from the increased 
sample, as the Hosmer & Lemeshow test can be conservative 
with continuous variables. A number of models were re-run 
using a random selection of 50% of the data extracted 
(n=172), and this repeatedly showed improved goodness-of-
fit statistics, as well as improved the accuracy over the 
previous models. Generally occupancy did not contribute 
much to the predictive power of the model, whereas 
including vehicle position improved both accuracy and 
model fit. The results of the best four model fit tests are 
summarised in Table 2. The summary shows that the best 
model (3) correctly classifies a vehicle as queued or 
platooned 94.8% of the time. It also has the highest R2 values 
of all models that were analysed. However, it is more 
complex as it includes Vehicle Position that was recoded into 
3 bins, short (1-5), medium (6-9) and large (>9). The 
accuracy is measured as the absolute difference error 
between the number of observed and predicted queued 

         (a)             (b) 

 
Fig. (4). Variation by vehicle position (a) follow-up headway (b) of vehicle speed. 
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vehicles at each cycle, expressed as a percentage of all the 
observed queued vehicles. (Equation 6) 

Accuracy (%) = 
!"#(!!"#!!!"#$)

!!"#
  *100 (6) 

where, 
Qobs: Observed number of queued vehicles 
Qpred: Predicted number of queued vehicles 
 It is worth mentioning that of the four variables, Vehicle 
Speed has an undefined error component due to its reliance 
on using an estimated average vehicle length to derive speed. 
However, SCATS goes through a self-calibration process 
when the highest flow in a period is recorded, thus the 
effective vehicle length is updated at critical intervals. For 
testing sensitivity a new variable Error Speed was calculated 
by applying a random error term to the Vehicle Speed 
variable Arendonk (1996) cited in [32] a test using the 
average error of 12% for an unbiased estimator of speed was 
randomly applied to the observed vehicle speed. 

 Model 1 was re-run substituting Vehicle Speed with 
Error Speed to determine the sensitivity of an error in 
inferring speed from a single loop detector, and revealed no 
significant difference in the predictive power. Given the 
objective of this research is to develop a queue prediction 
model using readily available data from a single loop 
detector, model 4 has the most appeal due to its simplicity of 
only relying on two significant variables, and this model’s 
parameters Eq. (1) are reported in Table 3. 
 Fig. (5) shows the accuracy of model 4 applied to the 
observed queue length for each cycle from the NGSIM 
dataset. In order to improve the predictive accuracy of  the 
equation an initial logical filter was applied to the data. 
Using the Excel SOLVER function and constraint values for 
speed the optimal accuracy results were obtained using 
Equation 6 if the speed threshold is between 0 and 28 fps. 
Equation 6 is only applied to the detector data measuring 
vehicle speed and follow-up headway for the values within 
the speed constraint. The predicted probability can be 
calculated for each vehicle, with values above 0.501 

Table 1. Hypothesis test summary. 
 

 Null Hypothesis Sig. Decision 

1 The distribution of Vehicle Speed1 is the same across categories of Q_State. .000 Reject the null hypothesis. 

2 The distribution of Space Headway2 is the same across categories of Q_State. .001 Reject the null hypothesis. 

3 The distribution of Time Headway is the same across categories of Q_State. .094 Retain the null hypothesis. 

4 The distribution of Space gap3 is the same across categories of Q_State. .002 Reject the null hypothesis. 

5 The distribution of Follow-up Headway is the same across categories of Q_State. .521 Retain the null hypothesis. 

6 The distribution of Occupancy4 is the same across categories of Q_State. .000 Reject the null hypothesis. 
1Queued vehicles have a significantly lower speed (mph) (Mdn=20.3) than platooned vehicles (Mdn=33) (U=3219, z= 7.471, p<.001). 
2Queued vehicles have a significantly lower Space Headway (ft.) between vehicles (Mdn=145.7) than for platooned vehicles (Mdn=204.8) (U=2417, z= 3.285, p=.001). 
3Queued vehicles have a significantly lower Space Gap (ft.) between vehicles (Mdn=130.1) than platooned vehicles (Mdn=187.3) (U=2344, z= 3.137, p=.002). 
4Queued vehicles have a significantly higher occupancy (s) than for (Mdn=0.770) than platooned vehicles (Mdn=0.527) (U=860, z= -4.849, p<.001). 
 
Table 2. Summary of model fit. 
 

# Method Included Variables % Correct χ2 R2
HL R2

CS R2
N 

1 Backward Stepwise (LR) 
n=123 

VehicleSpeed (Errorspeed) 
FollowupHeadway 

82.7 
(82.7) b 

8.14 a .57 .42 .58 

2 Backward Stepwise (LR) 
n=346 

VehicleSpeed 
FollowupHeadway 

Occupancy 
VehiclePosition 

91.4 35.1 c .36 .54 .76 

3 Backward Stepwise (LR) 
n=172 

 VehicleSpeed 
FollowupHeadway 

Vehicle position 

94.8 1.85 a .72 .59 .87 

4 Backward Stepwise (LR) 
n=172 

 VehicleSpeed 
FollowupHeadway  

93.0 4.54 c .30 .55 .81 

aR2
HL: Hosmer & Lemeshow. 

*R2
CS: Cox & Snell. 

*R2
N: Nagelkerke. 

*The H-L model chi-square values are non-significant indicating a good fit of the data to the model. 
bPercentage Correct values in brackets are sensitivity checks using the estimated error in speed measured from single loops. 
cThe H-L model chi-square values are significant indicating a poor fit. 
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classifying the traversing vehicle as platooned and values 
equal to and below 0.5 as queued. 
 A filtering algorithm can then be applied to classify a 
sequence of vehicles according to their predicted queue 
status. As it is possible that some misclassifications could 
occur, but by nature of a sequence of vehicles discharging 
over the stop line, the prediction can be improved by 
applying a logical filter as illustrated in Table 4. Typical 

logic values in a decision algorithm using combinations of 
vehicle position, measured speed, headway, and preceding 
and succeeding vehicle queue status can be then used to 
correct potential misclassifications of an individual vehicle’s 
queue status.  
 The classification correction algorithm (Table 5) tests 
and corrects the predicted status of a vehicle by searching in 
a forward direction; first checking vehicle n’s status and then 

Table 3. Model 4 – Main effects variables in the equation. 
 

Variable B S.E. Wald Sig. Exp (B) 
95% C.I. for EXP (B) 

Lwr Upr 

Vehicle Velocity .47 .11 20.98 .000 1.60 1.32 1.97 

Followup Headway .77 .26 8.98 .003 2.17 1.31 3.61 

Occu-pancy .37 1.63 .05 .817 1.46 0.06 35.12 

Constant -16.50 3.98 17.17 .000 .00   

 
Fig. (5). Observed Groups and Predicted Probabilities - Model 4. 

Table 4. Hypothetical queue status correction results. 
 

Eq. 6 Queue Status  Prediction for:  
V1, Vn+1, Vn+2, Vn Correction 

Queue Length (in Vehicles) 

Estimated Corrected 

QQQPQQQPPPP 4th vehicle classified as Platooned, but unlikely due to following  
vehicles 5,6,7 coded Queued - Correct 4th vehicle 6 7 

QQQPPPQPPP 7th vehicle classified as Queued but unlikely due to preceding 4,5,6  
and following vehicles 7,8,9 coded Platooned – Correct 7th vehicle 4 3 
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n-1 before n+1. This then corrects any misclassification of 
queues status of vehicle n before moving to adjust vehicle 
n+1. 
 The NGSIM southbound trajectory data were used to 
check the accuracy of the model. The data included queues 
varying between 3 and 11 vehicles and a mixture of queued 
only, and queued with platooned vehicles. Each vehicle was 
manually classified as being queued or platooned. Those 
vehicles that were queued during the red phase and those that 
joined during the green phase that were impeded by the back 
of the discharging queue are classified as queued. The first 
and all subsequent arriving platooned vehicles that were not 
impeded by the back of the queue were all classified as 
platooned. 
 Each vehicle was arranged in their sequential departing 
order and their queue status calculated using model 4. The 
logical filter test was then applied to the predicted queue 
status, and the final status was then compared to the 
observed field data. Table 6 shows a sample of one of the 
cycles used for validation to demonstrate the difference in 
accuracy of the prediction equation and that of the logical 
filter. 
 The validation dataset achieved a 97.5% accuracy of 
correctly classifying a vehicle as being queued. Validation 

field tests are underway using data from local intersections 
around Wellington, New Zealand, to further develop and 
validate the queue prediction model. 
 Fig. (6) shows the accuracy between observed and 
predicted queue length after the logical filter was applied for 
27 southbound cycles. Cycle 13 was omitted as this cycle 
included queue failure under saturated conditions during the 
entire green phase. 

5. DISCUSSION 

 This paper fits a broader study of understanding driver 
behaviour in response to queues at traffic signals. 
Understanding the influence and response to queues should 
lead to improving either optimisation of the traffic system, or 
could possibly be used to manage the system through the 
controlling of queue lengths to influence drivers’ response to 
avoid queues. If we can estimate queue lengths from data 
collected from a single loop detector, traffic managers can 
create or dissipate queues to influence driver behaviour. The 
issue this paper addresses is the creation of a queue 
estimation model that uses data from a single loop detector. 
 Previous research shows headway stabilisation occurring 
between the 5th and 12th vehicle. The findings from the 
NGSIM data reveal that they do not stabilise after the 7th 

Table 5. Logical filter test. 
 

TEST n-1 n n+1 Adjusted n Outcome of Logic Test 

1     If speed >28 fps then P, else 

2 Q Q Q = Q True value  

3 Q Q P = Q True - Possible cut point, check condition4  

4 Q P P = P True - cut point confirmed 

5 P P P = P True – Platoon confirmed  

6 Q P Q = Q Change P to Q as the P is likely to be wrong 

7 P Q Q = Q Cannot occur as the n-1 P would have already been changed in test 5  

8 P P Q = P Keep as P, the filter will correct the n+1 Q to a P as in test 8  

9 P Q P = P Change Q to P, as Q is likely to be wrong  

Table 6. Sample extract of validation data set. 
 

Vehicle Position Observed Q Status Model 4 Predicted Q-Status Logical Filter Correction Q Accuracy 

1 Q Q Q TRUE 

2 Q Q Q TRUE 

3 Q Q Q TRUE 

4 Q Platoon Platoon  

5 Q Platoon Platoon  

6 Q Q Platoon  

7 Q Platoon Platoon  

8 Platoon Platoon Platoon  

9 Platoon Q Platoon  

10 Platoon Platoon Platoon  
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vehicle, longer queues were not observed in this dataset to 
determine the point of stabilisation. Recent research on 
queue prediction used detectors placed some distance 
upstream of the stop line and used breakpoints in the 
occupancy as an indicator between the back of queue and 
arriving platoon [4]. Their models have limitations such as; 
the inability to determine the breakpoint when the arrival 
platoon headway is similar to the discharging queues 
headway. However, they argue this is a rare event. Other 
limitations are oversaturated conditions, and the reliance on 
an accurate, effective vehicle length, a typical problem with 
single loops. This paper does not deal with oversaturated 
conditions. The likely error in effective vehicle length, reveal 
that these error variations do not unduly influence the 
accuracy of the logistic regression model’s prediction, and 
therefore are not thought to be a major influence in its 
application. However, the true effect of this error can only be 
tested using real data from a SCATS system, which is the 
subject of a further research study.  
 Once an individual vehicles queue status has been classified 
using model 4 for data where the speed threshold < 28 fps, the 
sequence of vehicles traversing a stop line the individual 
classification can then be corrected through a filtering algorithm 
to produce a most likely queue length estimate. This queue 
length can then be used for offset optimisation that considers the 
back of the queue position and its discharge time required to 
improve progression. Improved progression should result in 
reduced queue lengths and fewer cycle failures. Knowing the 
queue length can also be used to influence driver behaviour, 
such as increasing queues on selected movements to discourage 
those routes from being selected, and increasing the probability 
of a driver selecting an alternative route that has better 
progression and smaller queues on the approach to an 
intersection. 

CONCLUSION 

 The Peachtree NGSIM high-resolution dataset was a good 
source of data to investigate the differences between the queued 
and platooned vehicles, however, the dataset lacks queues larger 

than 12 vehicles, and they discharged completely during each 
cycle. A total of 346 records from the IP and PM observations 
were extracted that had queues in excess of 3 vehicles, spread 
over 54 signal cycles. In addition to the 24 standard and 4 
extended variables, a number of additional variables (Follow-up 
headway, space gap, phase time, vehicle position, and queue 
breakpoint) were coded to be used in further analysis and model 
construction. 
 The final set of six potential variables (Vehicle speed, Space 
Headway, Space Gap, Time Headway, Follow-up Headway, 
Vehicle Position and Occupancy) were inspected and all the 
variables except for speed data were distributed non-normal. 
Follow-up Headway for platooned vehicles was more variable 
than queued vehicles. Liu, et al. [4] argue that a similar 
headway between queued and platooned vehicles is a rare event. 
The analysis of variance of the NGSIM data shows that this 
often occurs and that the differences between queued and 
platooned vehicles are not significant. 
 The results of the non-parametric equivalent analysis of 
variance, Mann-Whitney tests, revealed significant differences 
between queued and platooned vehicles for Vehicle speed, 
Space Headway, Space Gap and Occupancy. A Logistic 
Regression model form was selected to develop a prediction of 
each vehicles likely queue/platooned state using the SPSS 
Binary Logistic Regression model with Vehicle Speed and 
Follow-up Headway as the strongest predictors. Of the >20 
models analysed four different model forms and entry methods 
were reported in this paper, resulting in a predictive accuracy 
ranging from 83% to 95%. The final logistic model form with 
only Vehicle Speed and Follow-up Headway was selected as 
the best predictive model at 97.5% accuracy on the fully 
extracted southbound dataset, as these two variables are easily 
measured by the SCATS detector loops. The strongest predictor 
of Vehicle Speed at the stop line is dependent on an estimated 
average vehicle length. A randomly applied error to vehicle 
speed did not markedly change the accuracy of the best 
prediction models. 
 The queue prediction model is based on queues that are <12 
vehicles and therefore fall into the short queue range of 

 
Fig. (6). Model 4 accuracy of SB Q-prediction. 
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prediction. It will require to be validated with longer 
discharging queues, however, it is not the intention to be 
validated for oversaturated conditions with queues blocking 
back. The models are further validated by an independent data 
set from the NGSIM database using data from the southbound 
direction. Further calibration and validation tests are planned to: 
• Calibrate the offset model with a before-and-after 

experiment to measure improvement in progression and 
reduction in corridor delay using both a Saturn traffic 
model and field tests. 

• Validate the queue estimation with more local collected 
data from four to six sites in Wellington, New Zealand. 
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