The Analysis of Dynamic O/D Adjustment for Bicycle Traffic Demand Estimation with AIMSUN Simulation Model: A Case Study of Nakhon Sawan Municipality in Thailand

Karn Chalermwongphan*, Prapatpong Upala
Faculty of Architecture, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok, Thailand

Article Metrics

CrossRef Citations:
Total Statistics:

Full-Text HTML Views: 1381
Abstract HTML Views: 725
PDF Downloads: 242
ePub Downloads: 200
Total Views/Downloads: 2548
Unique Statistics:

Full-Text HTML Views: 701
Abstract HTML Views: 512
PDF Downloads: 146
ePub Downloads: 125
Total Views/Downloads: 1484

Creative Commons License
© 2018 Chalermwongphan and Upala.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address Correspondence to this author at the Faculty of Architecture, King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok, Thailand; Tel: +669-9249-9939; E-mail:



This research aimed to present the process of estimating bicycle traffic demand in order to design bike routes that meet the daily transportation needs of the people in Nakhon Sawan Municipality.


The primary and secondary traffic data were collected to develop a virtual traffic simulation model with the use of the AIMSUN simulation software. The model validation method was carried out to adjust the origin and destination survey data (O/D matrix) by running dynamic O/D adjustment. The 99 replication scenarios were statistically examined and assessed using the goodness-of-fit test. The 9 measures, which were examined, included: 1) Root Mean Square Error (RMSE), 2) Root Mean Square Percentage Error (RMSPE%), 3) Mean Absolute Deviation (MAD), 4) Mean Bias Error (MBE), 5) Mean Percentage Error (MPE%), 6) Mean Absolute Percentage Error (MAPE%), 7) Coefficient of Determination (R2), 8) GEH Statistic (GEH), and 9) Thiel’s U Statistic (Theil’s U).


The resulting statistical values were used to determine the acceptable ranges according to the acceptable indicators of each factor.


It was found that there were only 8 scenarios that met the evaluation criteria. The selection and ranking process was consequently carried out using the multi-factor scoring method, which could eliminate errors that might arise from applying only one goodness-of-fit test measure.

Keyword: AIMSUN simulation model, Bicycle traffic demand, O/D matrix adjustment, Multi factor scoring method, MAPE, RMSE.